Do you want to publish a course? Click here

DeGaS-MC: Dense Gas Survey in the Magellanic Clouds I -- An APEX survey of HCO+ and HCN(2-1) toward the LMC and SMC

86   0   0.0 ( 0 )
 Added by Maud Galametz
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Investigating star formation requires precise knowledge of the properties of the dense molecular gas. The low metallicity and wide range of star formation activity of the Large and Small Magellanic Clouds make them prime laboratories to study how local physical conditions impact the dense gas reservoirs. The aim of the Dense Gas Survey for the Magellanic Clouds (DeGaS-MC) project is to expand our knowledge of the relation between dense gas properties and star formation activity by targeting the LMC and SMC observed in the HCO+(2-1) and HCN(2-1) transitions. We carried out a pointing survey toward 30 LMC and SMC molecular clouds using the SEPIA180 instrument installed on the APEX telescope and a follow-up mapping campaign in 13 star-forming regions. This first paper provides line characteristic catalogs and integrated line-intensity maps of the sources. HCO+(2-1) is detected in 20 and HCN(2-1) in 8 of the 29 pointings observed. The dense gas velocity pattern follows the line-of-sight velocity field derived from the stellar population. The HCN emission is less extended than the HCO+ emission. The HCO+(2-1)/HCN(2-1) brightness temperature ratios range from 1 to 7, which is consistent with the large ratios commonly observed in low-metallicity environments. A larger number of young stellar objects are found at high HCO+ intensities and lower HCO+/HCN flux ratios, and thus toward denser lines of sight. The dense gas luminosities correlate with the star formation rate traced by the total infrared luminosity over the two orders of magnitude covered by our observations, although substantial region-to-region variations are observed.



rate research

Read More

To study the high-transition dense-gas tracers and their relationships to the star formation of the inner $sim$ 2 kpc circumnuclear region of NGC253, we present HCN $J=4-3$ and HCO$^+ J=4-3$ maps obtained with the James Clerk Maxwell Telescope (JCMT). With the spatially resolved data, we compute the concentration indices $r_{90}/r_{50}$ for the different tracers. HCN and HCO$^+$ 4-3 emission features tend to be centrally concentrated, which is in contrast to the shallower distribution of CO 1-0 and the stellar component. The dense-gas fraction ($f_text{dense}$, traced by the velocity-integrated-intensity ratios of HCN/CO and HCO$^+$/CO) and the ratio $R_text{31}$ (CO 3-2/1-0) decline towards larger galactocentric distances, but increase with higher SFR surface density. The radial variation and the large scatter of $f_text{dense}$ and $R_text{31}$ imply distinct physical conditions in different regions of the galactic disc. The relationships of $f_text{dense}$ versus $Sigma_text{stellar}$, and SFE$_text{dense}$ versus $Sigma_text{stellar}$ are explored. SFE$_text{dense}$ increases with higher $Sigma_text{stellar}$ in this galaxy, which is inconsistent with previous work that used HCN 1-0 data. This implies that existing stellar components might have different effects on the high-$J$ HCN and HCO$^+$ than their low-$J$ emission. We also find that SFE$_text{dense}$ seems to be decreasing with higher $f_text{dense}$, which is consistent with previous works, and it suggests that the ability of the dense gas to form stars diminishes when the average density of the gas increases. This is expected in a scenario where only the regions with high-density contrast collapse and form stars.
We present the first results from the Small Magellanic Cloud portion of a new Australia Telescope Compact Array (ATCA) HI absorption survey of both of the Magellanic Clouds, comprising over 800 hours of observations. Our new HI absorption line data allow us to measure the temperature and fraction of cold neutral gas in a low metallicity environment. We observed 22 separate fields, targeting a total of 55 continuum sources against 37 of which we detected HI absorption; from this we measure a column density weighted mean average spin temperature of $<T_{s}>=150$ K. Splitting the spectra into individual absorption line features, we estimate the temperatures of different gas components and find an average cold gas temperature of $sim{30}$ K for this sample, lower than the average of $sim{40}$ K in the Milky Way. The HI appears to be evenly distributed throughout the SMC and we detect absorption in $67%$ of the lines of sight in our sample, including some outside the main body of the galaxy ($N_{text{HI}}>2times{10^{21}}$ cm$^{-2}$). The optical depth and temperature of the cold neutral atomic gas shows no strong trend with location spatially or in velocity. Despite the low metallicity environment, we find an average cold gas fraction of $sim{20%}$, not dissimilar from that of the Milky Way.
We aim to characterize the outflow properties of a sample of early Class 0 phase low-mass protostars in Orion first identified by the Herschel Space Observatory. We also look for signatures of infall in key molecular lines. CO $J$=3-2 and $J$=4-3 maps toward 16 very young Class 0 protostars were obtained using the Atacama Pathfinder EXperiment (APEX) telescope. We search the data for line wings indicative of outflows and calculate masses, velocities, and dynamical times for the outflows. We use additional HCO$^+$, H$^{13}$CO$^+$, and NH$_3$ lines to look for infall signatures toward the protostars. We estimate the outflow masses, forces, and mass-loss rates based on the CO $J$=3-2 and $J$=4-3 line intensities for 8 sources with detected outflows. We derive upper limits for the outflow masses and forces of sources without clear outflow detections. The total outflow masses for the sources with clear outflow detections are in the range between 0.03 and 0.16 $M_odot$ for CO $J$=3-2, and in the range between 0.02 and 0.10 $M_odot$ for CO $J$=4-3. The outflow forces are in the range between $1.57times10^{-4}$ and $1.16times10^{-3}$ $M_odot$ km s$^{-1}$ yr$^{-1}$ for CO $J$=3-2 and in the range between $1.14times10^{-4}$ and $6.92times10^{-4}$ $M_odot$ km s$^{-1}$ yr$^{-1}$ for CO $J$=4-3. Nine protostars in our sample show asymmetric line profiles indicative of infall in HCO$^+$, compared to H$^{13}$CO$^+$ or NH$_3$. The outflow forces of the protostars in our sample show no correlation with the bolometric luminosity, unlike those found by some earlier studies for other Class 0 protostars. The derived outflow forces for the sources with detected outflows are similar to those found for other - more evolved - Class 0 protostars, suggesting that outflows develop quickly in the Class 0 phase.
(Abridged) As the stellar X-ray and UV light penetration of a protoplanetary disk depends sensitively on the dust properties, trace molecular species like HCO+, HCN, and CN are expected to show marked differences from photoprocessing effects as the dust content in the disk evolves. We investigate the evolution of the UV irradiation of the molecular gas in a sample of classical T Tauri stars in Taurus that exhibit a wide range in grain growth and dust settling properties. We obtained HCO+ (J=3-2), HCN (J=3-2), and CN (J=2-1) observations of 13 sources with the JCMT. Our sample has 1.3mm fluxes in excess of 75mJy, indicating the presence of significant dust reservoirs; a range of dust settling as traced through their spectral slopes between 6, 13, and 25 microns; and varying degrees of grain growth as extrapolated from the strength of their 10-micron silicate emission features. We compare the emission line strengths with the sources continuum flux and infrared features, and use detailed modeling based on two different model prescriptions to compare typical disk abundances for HCO+, HCN, and CN with the gas-line observations for our sample. We detected HCO+ (3-2) toward 6 disks, HCN (3-2) from 0 disks, and CN (2-1) toward 4 disks. For the complete sample, there is no correlation between the gas-line strengths or their ratios and either the sources dust continuum flux or infrared slopes.
Spectral line survey observations of 7 molecular clouds in the Large Magellanic Cloud (LMC) have been conducted in the 3 mm band with the Mopra 22 m telescope to reveal chemical compositions in low metallicity conditions. Spectral lines of fundamental species such as CS, SO, CCH, HCN, HCO+, and HNC are detected in addition to those of CO and 13CO, while CH3OH is not detected in any source and N2H+ is marginally detected in two sources. The molecular-cloud scale (10 pc scale) chemical composition is found to be similar among the 7 sources regardless of different star formation activities, and hence, it represents the chemical composition characteristic to the LMC without influences of star formation activities. In comparison with chemical compositions of Galactic sources, the characteristic features are (1) deficient N-bearing molecules, (2) abundant CCH, and (3) deficient CH3OH. The feature (1) is due to a lower elemental abundance of nitrogen in the LMC, whereas the features (2) and (3) seem to originate from extended photodissociation regions and warmer temperature in cloud peripheries due to a lower abundance of dust grains in the low metallicity condition. In spite of general resemblance of chemical abundances among the seven sources, the CS/HCO+ and SO/HCO+ ratios are found to be slightly higher in a quiescent molecular cloud. An origin of this trend is discussed in relation to possible depletion of sulfur along molecular cloud formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا