Do you want to publish a course? Click here

Amplitude analysis of the $B^+to D^+D^-K^+$ decay

114   0   0.0 ( 0 )
 Added by Daniel Johnson
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Results are reported from an amplitude analysis of the $B^+to D^+D^-K^+$ decay. The analysis is carried out using LHCb proton-proton collision data taken at $sqrt{s}=7,8,$ and $13$ TeV, corresponding to a total integrated luminosity of 9 fb$^{-1}$. In order to obtain a good description of the data, it is found to be necessary to include new spin-0 and spin-1 resonances in the $D^-K^+$ channel with masses around 2.9 GeV$/c^2$, and a new spin-0 charmonium resonance in proximity to the spin-2 $chi_{c2}(3930)$ state. The masses and widths of these resonances are determined, as are the relative contributions of all components in the amplitude model, which additionally include the vector charmonia $psi(3770)$, $psi(4040)$, $psi(4160)$ and $psi(4415)$ states and a nonresonant component.



rate research

Read More

The $B^{-}to D^{+}K^{-}pi^{-}$ decay is observed in a data sample corresponding to $3.0~rm{fb}^{-1}$ of $pp$ collision data recorded by the LHCb experiment during 2011 and 2012. Its branching fraction is measured to be ${cal B}(B^{-}to D^{+}K^{-}pi^{-}) = (7.31 pm 0.19 pm 0.22 pm 0.39) times 10^{-5}$ where the uncertainties are statistical, systematic and from the branching fraction of the normalisation channel $B^{-}to D^{+}pi^{-}pi^{-}$, respectively. An amplitude analysis of the resonant structure of the $B^{-}to D^{+}K^{-}pi^{-}$ decay is used to measure the contributions from quasi-two-body $B^{-}to D_{0}^{*}(2400)^{0}K^{-}$, $B^{-}to D_{2}^{*}(2460)^{0}K^{-}$, and $B^{-}to D_{J}^{*}(2760)^{0}K^{-}$ decays, as well as from nonresonant sources. The $D_{J}^{*}(2760)^{0}$ resonance is determined to have spin~1.
The $B^+ to D^{*-}K^+pi^+$ decay potentially provides an excellent way to investigate charm meson spectroscopy. The decay is searched for in a sample of proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of $3~{rm fb}^{-1}$. A clear signal is observed, and the ratio of its branching fraction to that of the $B^+ to D^{*-}pi^+pi^+$ normalisation channel is measured to be begin{equation*} frac{mathcal{B}(B^+ to D^{*-}K^+pi^+)}{mathcal{B}(B^+ to D^{*-}pi^+pi^+)} = left( 6.39 pm 0.27 pm 0.48 right) times 10^{-2} , , end{equation*} where the first uncertainty is statistical and the second is systematic. This is the first observation of the $B^+ to D^{*-}K^+pi^+$ decay.
The Dalitz plot analysis technique is used to study the resonant substructures of $B^{-} to D^{+} pi^{-} pi^{-}$ decays in a data sample corresponding to 3.0 ${rm fb}^{-1}$ of $pp$ collision data recorded by the LHCb experiment during 2011 and 2012. A model-independent analysis of the angular moments demonstrates the presence of resonances with spins 1, 2 and 3 at high $D^{+}pi^{-}$ mass. The data are fitted with an amplitude model composed of a quasi-model-independent function to describe the $D^{+}pi^{-}$ S-wave together with virtual contributions from the $D^{*}(2007)^{0}$ and $B^{*0}$ states, and components corresponding to the $D^{*}_{2}(2460)^{0}$, $D^{*}_{1}(2680)^{0}$, $D^{*}_{3}(2760)^{0}$ and $D^{*}_{2}(3000)^{0}$ resonances. The masses and widths of these resonances are determined together with the branching fractions for their production in $B^{-} to D^{+} pi^{-} pi^{-}$ decays. The $D^{+}pi^{-}$ S-wave has phase motion consistent with that expected due to the presence of the $D^{*}_{0}(2400)^{0}$ state. These results constitute the first observations of the $D^{*}_{3}(2760)^{0}$ and $D^{*}_{2}(3000)^{0}$ resonances.
The resonant structure of the doubly Cabibbo-suppressed decay $D^+ to K^-K^+K^+$ is studied for the first time. The measurement is based on a sample of pp-collision data, collected at a centre-of-mass energy of 8 TeV with the LHCb detector and corresponding to an integrated luminosity of 2 fb$^-1$. The amplitude analysis of this decay is performed with the isobar model and a phenomenological model based on an effective chiral Lagrangian. In both models the S-wave component in the $K^-K^+$ system is dominant, with a small contribution of the $phi(1020)$ meson and a negligible contribution from tensor resonances. The $K^-K^+$ scattering amplitudes for the considered combinations of spin (0,1) and isospin (0,1) of the two-body system are obtained from the Dalitz plot fit with the phenomenological decay amplitude.
A measurement of four branching-fraction ratios for three-body decays of $B$ mesons involving two open-charm hadrons in the final state is presented. Run 1 and Run 2 $pp$ collision data are used, recorded by the LHCb experiment at centre-of-mass energies $7$, $8$, and $13$ TeV and corresponding to an integrated luminosity of $9$ fb$^{-1}$. The measured branching-fraction ratios are [ begin{eqnarray} frac{mathcal{B} (B^+to D^{*+}D^-K^+)}{mathcal{B} (B^+to kern 0.2emoverline{kern -0.2em D}{}^0 D^0 K^+)} &=& 0.517 pm 0.015 pm 0.013 pm 0.011 , frac{mathcal{B} (B^+to D^{*-}D^+K^+)}{mathcal{B} (B^+to kern 0.2emoverline{kern -0.2em D}{}^0 D^0 K^+)} &=& 0.577 pm 0.016 pm 0.013 pm 0.013 , frac{mathcal{B} (B^0to D^{*-}D^0K^+)}{mathcal{B} (B^0to D^- D^0 K^+)} &=& 1.754 pm 0.028 pm 0.016 pm 0.035 , frac{mathcal{B} (B^+to D^{*+}D^-K^+)}{mathcal{B} (B^+to D^{*-}D^+K^+)} &=& 0.907 pm 0.033 pm 0.014 ,end{eqnarray} ] where the first of the uncertainties is statistical, the second systematic, and the third is due to the uncertainties on the $D$-meson branching fractions. These are the most accurate measurements of these ratios to date.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا