Do you want to publish a course? Click here

A consistent and robust measurement of the thermal state of the IGM at $2 leq z leq 4$ from a large sample of Ly$alpha$ forest spectra: Evidence for late and rapid HeII reionization

102   0   0.0 ( 0 )
 Added by Prakash Gaikwad
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We characterise the thermal state of the intergalactic medium (IGM) in ten redshift bins in the redshift range $2 leq z leq 4$ with a sample of 103 high resolution, high S/N Ly$alpha$ forest spectra using four different flux distribution statistics. Our measurements are calibrated with mock spectra from a large suite of hydrodynamical simulations post-processed with our thermal IGM evolution code CITE, finely sampling amplitude and slope of the expected temperature-density relation. The thermal parameters inferred from our measurements of the flux power spectrum, Doppler parameter distribution, as well as wavelet and curvature statistics agree well within their respective errors and all clearly show the peak in temperature and minimum in slope of the temperature density relation expected from HeII reionization. Combining our measurements from the different flux statistics gives $T_0=(14750 pm 1322)$K for the peak temperature at mean density and a corresponding minimum slope $gamma = 1.225 pm 0.120$. The peak in the temperature evolution occurs at $z approx 3$, in agreement with previous measurements that had suggested the presence of such a peak, albeit with a large scatter. Using CITE, we also calculate the thermal state of the IGM predicted by five widely used (spatially homogeneous) UV-background models. The rather rapid thermal evolution inferred by our measurements is well reproduced by two of the models, if we assume (physically well motivated) non-equilibrium evolution with photo-heating rates that are reduced by a moderate factor of $sim 0.7-0.8$. The other three models predict HeII reionization to be more extended with a somewhat earlier as well as higher temperature peak than our measurements suggest.



rate research

Read More

We use a set of AMR hydrodynamic simulations post-processed with the radiative-transfer code RADAMESH to study how inhomogeneous HeII reionization affects the intergalactic medium (IGM). We propagate radiation from active galactic nuclei (AGNs) considering two scenarios for the time evolution of the ionizing sources. We find that HeII reionization takes place in a very inhomogeneous fashion, through the production of well separated bubbles of the ionized phase that subsequently percolate. Overall, the reionization process is extended in time and lasts for a redshift interval Delta z>1. At fixed gas density, the temperature distribution is bimodal during the early phases of HeII reionization and cannot be described by a simple effective equation of state. When HeII reionization is complete, the IGM is characterized by a polytropic equation of state with index gamma~1.20. This relation is appreciably flatter than at the onset of the reionization process (gamma=1.56) and also presents a much wider dispersion around the mean. We extract HI and HeII Ly-alpha absorption spectra from the simulations and fit Voigt profiles to them. We find that the regions where helium is doubly ionized are characterized by different probability density functions of the curvature and of the Doppler b parameters of the HI Ly-alpha forest as a consequence of the bimodal temperature distribution during the early phases of HeII reionization. The column-density ratio in HeII and HI shows a strong spatial variability. Its probability density function rapidly evolves with time reflecting the increasing volume fraction in which ionizing radiation is harder due to the AGN contribution. Finally we show that the number density of the flux-transmission windows per unit redshift and the mean size of the dark gaps in the HeII spectra have the potential to distinguish between different reionization scenarios. (abridged)
We use combined South Pole Telescope (SPT)+Planck temperature maps to analyze the circumgalactic medium (CGM) encompassing 138,235 massive, quiescent 0.5 $leq$ z $leq$ 1.5 galaxies selected from data from the Dark Energy Survey (DES) and Wide-Field Infrared Survey Explorer (WISE). Images centered on these galaxies were cut from the 1.85 arcmin resolution maps with frequency bands at 95, 150, and 220 GHz. The images were stacked, filtered, and fit with a gray-body dust model to isolate the thermal Sunyaev-Zeldovich (tSZ) signal, which is proportional to the total energy contained in the CGM of the galaxies. We separate these $M_{star} = 10^{10.9} M_odot$ - $10^{12} M_odot$ galaxies into 0.1 dex stellar mass bins, detecting tSZ per bin up to $5.6sigma$ and a total signal-to-noise ratio of $10.1sigma$. We also detect dust with an overall signal-to-noise ratio of $9.8sigma$, which overwhelms the tSZ at 150GHz more than in other lower-redshift studies. We correct for the $0.16$ dex uncertainty in the stellar mass measurements by parameter fitting for an unconvolved power-law energy-mass relation, $E_{rm therm} = E_{rm therm,peak} left(M_star/M_{star,{rm peak}} right)^alpha$, with the peak stellar mass distribution of our selected galaxies defined as $M_{star,{rm peak}}= 2.3 times 10^{11} M_odot$. This yields an $E_{rm therm,peak}= 5.98_{-1.00}^{+1.02} times 10^{60}$ erg and $alpha=3.77_{-0.74}^{+0.60}$. These are consistent with $z approx 0$ observations and within the limits of moderate models of active galactic nuclei (AGN) feedback. We also compute the radial profile of our full sample, which is similar to that recently measured at lower-redshift by Schaan et al. (2021).
We compare a sample of five high-resolution, high S/N Ly$alpha$ forest spectra of bright $6<z lesssim 6.5$ QSOs aimed at spectrally resolving the last remaining transmission spikes at $z>5$ with those obtained from mock absorption spectra from the Sherwood and Sherwood-Relics suites of hydrodynamical simulations of the intergalactic medium (IGM). We use a profile fitting procedure for the inverted transmitted flux, $1-F$, similar to the widely used Voigt profile fitting of the transmitted flux $F$ at lower redshifts, to characterise the transmission spikes that probe predominately underdense regions of the IGM. We are able to reproduce the width and height distributions of the transmission spikes, both with optically thin simulations of the post-reionization Universe using a homogeneous UV background and full radiative transfer simulations of a late reionization model. We find that the width of the fitted components of the simulated transmission spikes is very sensitive to the instantaneous temperature of the reionized IGM. The internal structures of the spikes are more prominant in low temeperature models of the IGM. The width distribution of the observed transmission spikes, which require high spectral resolution ($leq $ 8 km/s) to be resolved, is reproduced for optically thin simulations with a temperature at mean density of $T_0= (11000 pm 1600,10500pm 2100,12000 pm 2200)$ K at $z= (5.4,5.6,5.8)$. This is weakly dependent on the slope of the temperature-density relation, which is favoured to be moderately steeper than isothermal. In the inhomogeneous, late reionization, full radiative transfer simulations where islands of neutral hydrogen persist to $zsim5.3$, the width distribution of the observed transmission spikes is consistent with the range of $T_0$ caused by spatial fluctuations in the temperature-density relation.
74 - Kirill Makan 2020
We present new high-resolution (R~14,000) spectra of the two brightest HeII-transparent quasars in the far-UV (FUV) at z>3.5, HE2QSJ2311-1417 (z=3.70) and HE2QSJ1630+0435 (z=3.81), obtained with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST). In the predominantly saturated HeII absorption spectra, both sightlines show several isolated resolved (full width at half maximum FWHM>50 km/s) transmission spikes in HeII Ly$alpha$ and HeII Ly$beta$. The incidence of such spikes decreases with increasing redshift, but both sightlines show significant spikes at z>3.5, signaling the presence of fully ionized regions in the z>3.5 intergalactic medium (IGM). We employ an automated algorithm to compare the number of detected HeII transmission spikes to predictions from mock spectra created from the outputs of a cubic (100/h cMpc)^3 optically thin Nyx hydrodynamical simulation, assuming a range of UV background photoionization rates $Gamma_mathrm{HeII}$. From the incidence of Ly$alpha$ and Ly$beta$ transmission spikes we infer similar photoionization rates of $Gamma_mathrm{HeII}=2.0^{+0.6}_{-0.5}times 10^{-15}$s$^{-1}$ at 3.51<z<3.66 and $Gamma_mathrm{HeII}=0.9pm0.3 times 10^{-15}$s$^{-1}$ at 3.460<z<3.685, respectively. Because the transmission spikes indicate fully ionized regions at z>3.5 along both lines of sight, our observations provide further evidence that HeII reionization had substantially progressed at these redshifts.
The transmission of Lyman-{alpha} (Ly{alpha}) in the spectra of distant quasars depends on the density, temperature, and ionization state of the intergalactic medium (IGM). Therefore, high-redshift (z > 5) Ly{alpha} forests could be invaluable in studying the late stages of the epoch of reionization (EoR), as well as properties of the sources that drive it. Indeed, high-quality quasar spectra have now firmly established the existence of large-scale opacity fluctuations at z > 5, whose physical origins are still debated. Here we introduce a Bayesian framework capable of constraining the EoR and galaxy properties by forward-modelling the high-z Ly{alpha} forest. Using priors from galaxy and CMB observations, we demonstrate that the final overlap stages of the EoR (when >95% of the volume was ionized) should occur at z < 5.6, in order to reproduce the large-scale opacity fluctuations seen in forest spectra. However, it is the combination of patchy reionization and the inhomogeneous UV background that produces the longest Gunn-Peterson troughs. Ly{alpha} forest observations tighten existing constraints on the characteristic ionizing escape fraction of galaxies, with the combined observations suggesting f_{rm esc} approx 7^4_3%, and disfavoring a strong evolution with the galaxys halo (or stellar) mass.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا