No Arabic abstract
(Abridged) We use optical spectroscopy to investigate the disk, wind, and accretion during the 2008 ZCMa NW outburst. Over 1000 optical emission lines reveal accretion, a variable, multi-component wind, and double-peaked lines of disk origin. The variable, non-axisymmetric, accretion-powered wind has slow ($sim $0 km s$^{-1}$), intermediate ($sim -$100 km s$^{-1}$) and fast ($geq -$400 km s$^{-1}$) components. The fast components are of stellar origin and disappear in quiescence, while the slow component is less variable and could be related to a disk wind. The changes in the optical depth of the lines between outburst and quiescence are consistent with increased accretion being responsible for the observed outburst. We derive an accretion rate of 10$^{-4}$ M$_odot$/yr in outburst. The Fe I and weak Fe II lines arise from an irradiated, flared disk at $sim$0.5-3 $times$M$_*$/16M$_odot$ au with asymmetric upper layers, revealing that the energy from the accretion burst is deposited at scales below 0.5 au. Some line profiles have redshifted asymmetries, but the system is unlikely sustained by magnetospheric accretion, especially in outburst. The accretion-related structures extend over several stellar radii and, like the wind, are likely non-axisymmetric. The stellar mass may be $sim$6-8 M$_odot$, lower than previously thought ($sim$16 M$_odot$). Emission line analysis is found to be a powerful tool to study the innermost regions and accretion in stars within a very large range of effective temperatures. The density ranges in the disk and accretion structures are higher than in late-type stars, but the overall behavior, including the innermost disk emission and variable wind, is very similar independently of the spectral type. Our work suggests a common outburst behavior for stars with spectral types ranging from M-type to intermediate-mass stars.
We explore the accretion mechanisms in EX Lupi, prototype of EXor variables, during its quiescence and outburst phases. We analyse high-resolution optical spectra taken before, during, and after its 2008 outburst. In quiescence and outburst, the star presents many permitted emission lines, including typical CTTS lines and numerous neutral and ionized metallic lines. During the outburst, the number of emission lines increases to over a thousand, with narrow plus broad component structure (NC+BC). The BC profile is highly variable on short timescales (24-72h). An active chromosphere can explain the metallic lines in quiescence and the outburst NC. The dynamics of the BC line profiles suggest an origin in a hot, dense, non-axisymmetric, and non-uniform accretion column that suffers velocity variations along the line-of-sight on timescales of days. Assuming Keplerian rotation, the emitting region would be located at ~0.1-0.2 AU, consistent with the inner disk rim, but the velocity profiles of the lines reveal a combination of rotation and infall. Line ratios of ions and neutrals can be reproduced with a temperature of T~6500 K for electron densities of a few times 10$^{12}$cm$^{-3}$ in the line-emitting region. The data confirm that the 2008 outburst was an episode of increased accretion, albeit much stronger than previous EX Lupi and typical EXors outbursts. The line profiles are consistent with the infall/rotation of a non-axisymmetric structure that could be produced by clumpy accretion during the outburst phase. A strong inner disk wind appears in the epochs of higher accretion. The rapid recovery of the system after the outburst and the similarity between the pre-outburst and post-outburst states suggest that the accretion channels are similar during the whole period, and only the accretion rate varies, providing a superb environment for studying the accretion processes.
We present an improved semi-analytic model for calculation of the broad optical emission-line signatures from sub-parsec supermassive black hole binaries (SBHBs) in circumbinary disks. The second-generation model improves upon the treatment of radiative transfer by taking into account the effect of the radiation driven accretion disk wind on the properties of the emission-line profiles. Analysis of 42.5 million modeled emission-line profiles shows that correlations between the profile properties and SBHB parameters identified in the first-generation model are preserved, indicating that their diagnostic power is not diminished. The profile shapes are a more sensitive measure of the binary orbital separation and the degree of alignment of the black hole mini-disks, and are less sensitive to the SBHB mass ratio and orbital eccentricity. We also find that modeled profile shapes are more compatible with the observed sample of SBHB candidates than with our control sample of regular AGNs. Furthermore, if the observed sample of SBHBs is made up of genuine binaries, it must include compact systems with comparable masses, and misaligned mini-disks. We note that the model described in this paper can be used to interpret the observed emission-line profiles once a sample of confirmed SBHBs is available but cannot be used to prove that the observed SBHB candidates are true binaries.
Spectral lines allow us to probe the thermodynamics of the solar atmosphere, but the shape of a single spectral line may be similar for different thermodynamic solutions. Multiline analyses are therefore crucial, but computationally cumbersome. We investigate correlations between several chromospheric and transition region lines to restrain the thermodynamic solutions of the solar atmosphere during flares. We used machine-learning methods to capture the statistical dependencies between 6 spectral lines sourced from 21 large solar flares observed by NASAs Interface Region Imaging Spectrograph (IRIS). The techniques are based on an information-theoretic quantity called mutual information (MI), which captures both linear and nonlinear correlations between spectral lines. The MI is estimated using both a categorical and numeric method, and performed separately for a collection of quiet Sun and flaring observations. Both approaches return consistent results, indicating weak correlations between spectral lines under quiet Sun conditions, and substantially enhanced correlations under flaring conditions, with some line-pairs such as Mg II and C II having a normalized MI score as high as 0.5. We find that certain spectral lines couple more readily than others, indicating a coherence in the solar atmosphere over many scale heights during flares, and that all line-pairs are correlated to the GOES derivative, indicating a positive relationship between correlation strength and energy input. Our methods provide a highly stable and flexible framework for quantifying dependencies between the physical quantities of the solar atmosphere, allowing us to obtain a three-dimensional picture of its state.
We present optical and NIR spectroscopic observations of U Sco 2010 outburst. From the analysis of lines profiles we identify a broad and a narrow component and show that the latter originates from the reforming accretion disk. We show that the accretion resumes shortly after the outburst, on day +8, roughly when the super-soft (SSS) X-ray phase starts. Consequently U Sco SSS phase is fueled (in part or fully) by accretion and should not be used to estimate $m_{mathrm{rem}}$, the mass of accreted material which has not been ejected during the outburst. In addition, most of the He emission lines, and the HeII lies in particular, form in the accretion flow/disk within the binary and are optically thick, thus preventing an accurate abundance determination. A late spectrum taken in quiescence and during eclipse shows CaII H&K, the G-band and MgI b absorption from the secondary star. However, no other significant secondary star features have been observed at longer wavelengths and in the NIR band.
Accretion is a fundamental process in star formation. Although the time evolution of accretion remains a matter of debate, observations and modelling studies suggest that episodic outbursts of strong accretion may dominate the formation of the protostar. Observing young stellar objects during these elevated accretion states is crucial to understanding the origin of unsteady accretion. ZCMa is a pre-main-sequence binary system composed of an embedded Herbig Be star, undergoing photometric outbursts, and a FU Orionis star. The Herbig Be component recently underwent its largest optical photometric outburst detected so far. We aim to constrain the origin of this outburst by studying the emission region of the HI Brackett gamma line, a powerful tracer of accretion/ejection processes on the AU-scale in young stars. Using the AMBER/VLTI instrument at spectral resolutions of 1500 and 12 000, we performed spatially and spectrally resolved interferometric observations of the hot gas emitting across the Brackett gamma emission line, during and after the outburst. From the visibilities and differential phases, we derive characteristic sizes for the Brackett gamma emission and spectro-astrometric measurements across the line, with respect to the continuum. We find that the line profile, the astrometric signal, and the visibilities are inconsistent with the signature of either a Keplerian disk or infall of matter. They are, instead, evidence of a bipolar wind, maybe partly seen through a disk hole inside the dust sublimation radius. The disappearance of the Brackett gamma emission line after the outburst suggests that the outburst is related to a period of strong mass loss rather than a change of the extinction along the line of sight. Based on these conclusions, we speculate that the origin of the outburst is an event of enhanced mass accretion, similar to those occuring in EX Ors and FU Ors.