Do you want to publish a course? Click here

Accelerating Sparse DNN Models without Hardware-Support via Tile-Wise Sparsity

84   0   0.0 ( 0 )
 Added by Cong Guo
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Network pruning can reduce the high computation cost of deep neural network (DNN) models. However, to maintain their accuracies, sparse models often carry randomly-distributed weights, leading to irregular computations. Consequently, sparse models cannot achieve meaningful speedup on commodity hardware (e.g., GPU) built for dense matrix computations. As such, prior works usually modify or design completely new sparsity-optimized architectures for exploiting sparsity. We propose an algorithm-software co-designed pruning method that achieves latency speedups on existing dense architectures. Our work builds upon the insight that the matrix multiplication generally breaks the large matrix into multiple smaller tiles for parallel execution. We propose a tiling-friendly tile-wise sparsity pattern, which maintains a regular pattern at the tile level for efficient execution but allows for irregular, arbitrary pruning at the global scale to maintain the high accuracy. We implement and evaluate the sparsity pattern on GPU tensor core, achieving a 1.95x speedup over the dense model.



rate research

Read More

Accelerating deep model training and inference is crucial in practice. Existing deep learning frameworks usually concentrate on optimizing training speed and pay fewer attentions to inference-specific optimizations. Actually, model inference differs from training in terms of computation, e.g. parameters are refreshed each gradient update step during training, but kept invariant during inference. These special characteristics of model inference open new opportunities for its optimization. In this paper, we propose a hardware-aware optimization framework, namely Woodpecker-DL (WPK), to accelerate inference by taking advantage of multiple joint optimizations from the perspectives of graph optimization, automated searches, domain-specific language (DSL) compiler techniques and system-level exploration. In WPK, we investigated two new automated search approaches based on genetic algorithm and reinforcement learning, respectively, to hunt the best operator code configurations targeting specific hardware. A customized DSL compiler is further attached to these search algorithms to generate efficient codes. To create an optimized inference plan, WPK systematically explores high-speed operator implementations from third-party libraries besides our automatically generated codes and singles out the best implementation per operator for use. Extensive experiments demonstrated that on a Tesla P100 GPU, we can achieve the maximum speedup of 5.40 over cuDNN and 1.63 over TVM on individual convolution operators, and run up to 1.18 times faster than TensorRT for end-to-end model inference.
As supercomputers continue to grow to exascale, the amount of data that needs to be saved or transmitted is exploding. To this end, many previous works have studied using error-bounded lossy compressors to reduce the data size and improve the I/O performance. However, little work has been done for effectively offloading lossy compression onto FPGA-based SmartNICs to reduce the compression overhead. In this paper, we propose a hardware-algorithm co-design of efficient and adaptive lossy compressor for scientific data on FPGAs (called CEAZ) to accelerate parallel I/O. Our contribution is fourfold: (1) We propose an efficient Huffman coding approach that can adaptively update Huffman codewords online based on codewords generated offline (from a variety of representative scientific datasets). (2) We derive a theoretical analysis to support a precise control of compression ratio under an error-bounded compression mode, enabling accurate offline Huffman codewords generation. This also helps us create a fixed-ratio compression mode for consistent throughput. (3) We develop an efficient compression pipeline by adopting cuSZs dual-quantization algorithm to our hardware use case. (4) We evaluate CEAZ on five real-world datasets with both a single FPGA board and 128 nodes from Bridges-2 supercomputer. Experiments show that CEAZ outperforms the second-best FPGA-based lossy compressor by 2X of throughput and 9.6X of compression ratio. It also improves MPI_File_write and MPI_Gather throughputs by up to 25.8X and 24.8X, respectively.
We consider an extension to the geometric amoebot model that allows amoebots to form so-called emph{circuits}. Given a connected amoebot structure, a circuit is a subgraph formed by the amoebots that permits the instant transmission of signals. We show that such an extension allows for significantly faster solutions to a variety of problems related to programmable matter. More specifically, we provide algorithms for leader election, consensus, compass alignment, chirality agreement and shape recognition. Leader election can be solved in $Theta(log n)$ rounds, w.h.p., consensus in $O(1)$ rounds and both, compass alignment and chirality agreement, can be solved in $O(log n)$ rounds, w.h.p. For shape recognition, the amoebots have to decide whether the amoebot structure forms a particular shape. We show how the amoebots can detect a parallelogram with linear and polynomial side ratio within $Theta(log{n})$ rounds, w.h.p. Finally, we show that the amoebots can detect a shape composed of triangles within $O(1)$ rounds, w.h.p.
Deep learning recommendation models (DLRMs) are used across many business-critical services at Facebook and are the single largest AI application in terms of infrastructure demand in its data-centers. In this paper we discuss the SW/HW co-designed solution for high-performance distributed training of large-scale DLRMs. We introduce a high-performance scalable software stack based on PyTorch and pair it with the new evolution of Zion platform, namely ZionEX. We demonstrate the capability to train very large DLRMs with up to 12 Trillion parameters and show that we can attain 40X speedup in terms of time to solution over previous systems. We achieve this by (i) designing the ZionEX platform with dedicated scale-out network, provisioned with high bandwidth, optimal topology and efficient transport (ii) implementing an optimized PyTorch-based training stack supporting both model and data parallelism (iii) developing sharding algorithms capable of hierarchical partitioning of the embedding tables along row, column dimensions and load balancing them across multiple workers; (iv) adding high-performance core operators while retaining flexibility to support optimizers with fully deterministic updates (v) leveraging reduced precision communications, multi-level memory hierarchy (HBM+DDR+SSD) and pipelining. Furthermore, we develop and briefly comment on distributed data ingestion and other supporting services that are required for the robust and efficient end-to-end training in production environments.
Sparsity, which occurs in both scientific applications and Deep Learning (DL) models, has been a key target of optimization within recent ASIC accelerators due to the potential memory and compute savings. These applications use data stored in a variety of compression formats. We demonstrate that both the compactness of different compression formats and the compute efficiency of the algorithms enabled by them vary across tensor dimensions and amount of sparsity. Since DL and scientific workloads span across all sparsity regions, there can be numerous format combinations for optimizing memory and compute efficiency. Unfortunately, many proposed accelerators operate on one or two fixed format combinations. This work proposes hardware extensions to accelerators for supporting numerous format combinations seamlessly and demonstrates ~4X speedup over performing format

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا