No Arabic abstract
In this work we examine refraction of light by computing full solutions to axion electrodynamics. We also allow for the possibility of an additional plasma component. We then specialise to wavelengths which are small compared to background scales to determine if refraction can be described by geometric optics. We also allow for the possibility of an additional plasma component. In the absence of plasma, for small incidence angles relative to the optical axis, axion electrodynamics and geometric optics are in good agreement, with refraction occurring at $mathcal{O}(g_{a gamma gamma}^2)$. However, for rays which lie far from the optical axis, the agreement with geometric optics breaks down and the dominant refraction requires a full wave-optical treatment, occurring at $mathcal{O}(g_{a gamma gamma})$. In the presence of sufficiently large plasma masses, the wave-like nature of light becomes suppressed and geometric optics is in good agreement with the full theory for all rays. Our results therefore suggest the necessity of a more comprehensive study of lensing and ray-tracing in axion backgrounds, including a full account of the novel $mathcal{O}(g_{a gamma gamma})$ wave-optical contribution to refraction.
We study the propagation of light in the presence of a parity-violating coupling between photons and axion-like particles (ALPs). Naively, this interaction could lead to a split of light rays into two separate beams of different polarization chirality and with different refraction angles. However, by using the eikonal method we explicitly show that this is not the case and that ALP clumps do not produce any spatial birefringence. This happens due to non-trivial variations of the photons frequency and wavevector, which absorb time-derivatives and gradients of the ALP field. We argue that these variations represent a new way to probe the ALP-photon couping with precision frequency measurements.
The decay of a massive pseudoscalar, scalar and U(1) boson into an electron-positron pair in the presence of strong electromagnetic backgrounds is calculated. Of particular interest is the constant-crossed-field limit, relevant for experiments that aim to measure high-energy axion-like-particle conversion into electron-positron pairs in a magnetic field. The total probability depends on the quantum nonlinearity parameter - a product of field and lightfront momentum invariants. Depending on the seed particle mass, different decay regimes are identified. In the below-threshold case, we find the probability depends on a non-perturbative tunnelling exponent depending on the quantum parameter and the particle mass. In the above-threshold case, we find that when the quantum parameter is varied linearly, the probability oscillates nonlinearly around the spontaneous decay probability. A strong-field limit is identified in which the threshold is found to disappear. In modelling the fall-off of a quasi-constant-crossed magnetic field, we calculate probabilities beyond the constant limit and investigate when the decay probability can be regarded as locally constant.
We attempt to identify a phenomenologically viable solution to the strong $CP$ problem in which the axion is composed entirely out of Standard Model fermion species. The axion consists predominantly of the $eta$ meson with a minuscule admixture of a pseudoscalar bilinear composite of neutrinos, $eta_{ u}$. The Peccei-Quinn symmetry is an axial symmetry that acts on the up quark and the neutrino species and is spontaneously broken by the QCD condensate of quarks as well as the condensate of neutrinos triggered by chiral gravitational anomaly. The up-quark mass is spontaneously generated by the neutrino condensate which plays the role of an additional composite Higgs doublet with the compositeness scale of the order of the neutrino masses. Such a scenario is highly economical: it solves the strong $CP$ problem, generates the up-quark and neutrino masses from fermion condensates and simultaneously protects the axion shift symmetry against gravitational anomaly. The phenomenology is different from the standard hidden axion case. One of the experimental signatures is the existence of a gravity-competing isotope-dependent attractive force among nucleons at (sub)micron distances.
We use AdS/CFT to construct the gravitational dual of a 5D CFT in the background of a non-extremal rotating black hole. Our boundary conditions are such that the vacuum state of the dual CFT corresponds to the Unruh state. We extract the expectation value of the stress tensor of the dual CFT using holographic renormalisation and show that it is stationary and regular on both the future and the past event horizons. The energy density of the CFT is found to be negative everywhere in our domain and we argue that this can be understood as a vacuum polarisation effect. We construct the solutions by numerically solving the elliptic Einstein--DeTurck equation for stationary Lorentzian spacetimes with Killing horizons.
The QCD axion mass may receive contributions from small-size instantons or other Peccei-Quinn breaking effects. We show that it is possible for such a heavy QCD axion to induce slow-roll inflation if the potential is sufficiently flat near its maximum by balancing the small instanton contribution with another Peccei-Quinn symmetry breaking term. There are two classes of such axion hilltop inflation, each giving a different relation between the axion mass at the minimum and the decay constant. The first class predicts the relation $m_phi sim 10^{-6}f_phi$, and the axion can decay via the gluon coupling and reheat the universe. Most of the predicted parameter region will be covered by various experiments such as CODEX, DUNE, FASER, LHC, MATHUSLA, and NA62 where the production and decay proceed through the same coupling that induced reheating. The second class predicts the relation $m_phi sim 10^{-6} f^2_phi/M_{rm pl}$. In this case, the axion mass is much lighter than in the previous case, and one needs another mechanism for successful reheating. The viable decay constant is restricted to be $10^8,{rm GeV}lesssim f_phi lesssim 10^{10},{rm GeV}$, which will be probed by future experiments on the electric dipole moment of nucleons. In both cases, requiring the axion hilltop inflation results in the strong CP phase that is close to zero.