Do you want to publish a course? Click here

The Advantage Regret-Matching Actor-Critic

86   0   0.0 ( 0 )
 Added by Audrunas Gruslys
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Regret minimization has played a key role in online learning, equilibrium computation in games, and reinforcement learning (RL). In this paper, we describe a general model-free RL method for no-regret learning based on repeated reconsideration of past behavior. We propose a model-free RL algorithm, the AdvantageRegret-Matching Actor-Critic (ARMAC): rather than saving past state-action data, ARMAC saves a buffer of past policies, replaying through them to reconstruct hindsight assessments of past behavior. These retrospective value estimates are used to predict conditional advantages which, combined with regret matching, produces a new policy. In particular, ARMAC learns from sampled trajectories in a centralized training setting, without requiring the application of importance sampling commonly used in Monte Carlo counterfactual regret (CFR) minimization; hence, it does not suffer from excessive variance in large environments. In the single-agent setting, ARMAC shows an interesting form of exploration by keeping past policies intact. In the multiagent setting, ARMAC in self-play approaches Nash equilibria on some partially-observable zero-sum benchmarks. We provide exploitability estimates in the significantly larger game of betting-abstracted no-limit Texas Holdem.

rate research

Read More

Actor-critic (AC) methods are ubiquitous in reinforcement learning. Although it is understood that AC methods are closely related to policy gradient (PG), their precise connection has not been fully characterized previously. In this paper, we explain the gap between AC and PG methods by identifying the exact adjustment to the AC objective/gradient that recovers the true policy gradient of the cumulative reward objective (PG). Furthermore, by viewing the AC method as a two-player Stackelberg game between the actor and critic, we show that the Stackelberg policy gradient can be recovered as a special case of our more general analysis. Based on these results, we develop practical algorithms, Residual Actor-Critic and Stackelberg Actor-Critic, for estimating the correction between AC and PG and use these to modify the standard AC algorithm. Experiments on popular tabular and continuous environments show the proposed corrections can improve both the sample efficiency and final performance of existing AC methods.
We introduce a hybrid CPU/GPU version of the Asynchronous Advantage Actor-Critic (A3C) algorithm, currently the state-of-the-art method in reinforcement learning for various gaming tasks. We analyze its computational traits and concentrate on aspects critical to leveraging the GPUs computational power. We introduce a system of queues and a dynamic scheduling strategy, potentially helpful for other asynchronous algorithms as well. Our hybrid CPU/GPU version of A3C, based on TensorFlow, achieves a significant speed up compared to a CPU implementation; we make it publicly available to other researchers at https://github.com/NVlabs/GA3C .
Asynchronous and parallel implementation of standard reinforcement learning (RL) algorithms is a key enabler of the tremendous success of modern RL. Among many asynchronous RL algorithms, arguably the most popular and effective one is the asynchronous advantage actor-critic (A3C) algorithm. Although A3C is becoming the workhorse of RL, its theoretical properties are still not well-understood, including the non-asymptotic analysis and the performance gain of parallelism (a.k.a. speedup). This paper revisits the A3C algorithm with TD(0) for the critic update, termed A3C-TD(0), with provable convergence guarantees. With linear value function approximation for the TD update, the convergence of A3C-TD(0) is established under both i.i.d. and Markovian sampling. Under i.i.d. sampling, A3C-TD(0) obtains sample complexity of $mathcal{O}(epsilon^{-2.5}/N)$ per worker to achieve $epsilon$ accuracy, where $N$ is the number of workers. Compared to the best-known sample complexity of $mathcal{O}(epsilon^{-2.5})$ for two-timescale AC, A3C-TD(0) achieves emph{linear speedup}, which justifies the advantage of parallelism and asynchrony in AC algorithms theoretically for the first time. Numerical tests on synthetically generated instances and OpenAI Gym environments have been provided to verify our theoretical analysis.
Actor-critic methods, a type of model-free Reinforcement Learning, have been successfully applied to challenging tasks in continuous control, often achieving state-of-the art performance. However, wide-scale adoption of these methods in real-world domains is made difficult by their poor sample efficiency. We address this problem both theoretically and empirically. On the theoretical side, we identify two phenomena preventing efficient exploration in existing state-of-the-art algorithms such as Soft Actor Critic. First, combining a greedy actor update with a pessimistic estimate of the critic leads to the avoidance of actions that the agent does not know about, a phenomenon we call pessimistic underexploration. Second, current algorithms are directionally uninformed, sampling actions with equal probability in opposite directions from the current mean. This is wasteful, since we typically need actions taken along certain directions much more than others. To address both of these phenomena, we introduce a new algorithm, Optimistic Actor Critic, which approximates a lower and upper confidence bound on the state-action value function. This allows us to apply the principle of optimism in the face of uncertainty to perform directed exploration using the upper bound while still using the lower bound to avoid overestimation. We evaluate OAC in several challenging continuous control tasks, achieving state-of the art sample efficiency.
Reinforcement learning algorithms are highly sensitive to the choice of hyperparameters, typically requiring significant manual effort to identify hyperparameters that perform well on a new domain. In this paper, we take a step towards addressing this issue by using metagradients to automatically adapt hyperparameters online by meta-gradient descent (Xu et al., 2018). We apply our algorithm, Self-Tuning Actor-Critic (STAC), to self-tune all the differentiable hyperparameters of an actor-critic loss function, to discover auxiliary tasks, and to improve off-policy learning using a novel leaky V-trace operator. STAC is simple to use, sample efficient and does not require a significant increase in compute. Ablative studies show that the overall performance of STAC improved as we adapt more hyperparameters. When applied to the Arcade Learning Environment (Bellemare et al. 2012), STAC improved the median human normalized score in 200M steps from 243% to 364%. When applied to the DM Control suite (Tassa et al., 2018), STAC improved the mean score in 30M steps from 217 to 389 when learning with features, from 108 to 202 when learning from pixels, and from 195 to 295 in the Real-World Reinforcement Learning Challenge (Dulac-Arnold et al., 2020).

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا