No Arabic abstract
The cumulative emission of Axion-Like Particles (ALPs) from all past core-collapse supernovae (SNe) would lead to a diffuse flux with energies ${mathcal O}(50)$ MeV. We use this to constrain ALPs featuring couplings to photons and to nucleons. ALPs coupled only to photons are produced in the SN core via the Primakoff process, and then converted into gamma rays in the Galactic magnetic field. We set a bound on $g_{agamma} lesssim 5 times 10^{-10}~{rm GeV}^{-1}$ for $m_a lesssim 10^{-11}~{rm eV}$, using recent measurements of the diffuse gamma-ray flux observed by the Fermi-LAT telescope. However, if ALPs couple also with nucleons, their production rate in SN can be considerably enhanced due to the ALPs nucleon-nucleon bremsstrahlung process. Assuming the largest ALP-nucleon coupling phenomenologically allowed, bounds on the diffuse gamma-ray flux lead to a much stronger $g_{agamma} lesssim 6 times 10^{-13}~{rm GeV}^{-1}$ for the same mass range. If ALPs are heavier than $sim$ keV, the decay into photons becomes significant, leading again to a diffuse gamma-ray flux. In the case of only photon coupling, we find, e.g. $g_{agamma} lesssim 5 times 10^{-11}~{rm GeV}^{-1}$ for $m_a sim 5~{rm keV}$. Allowing for a (maximal) coupling to nucleons, the limit improves to the level of $g_{agamma} lesssim 10^{-19}~{rm GeV}^{-1}$ for $m_a sim 20~{rm MeV}$, which represents the strongest constraint to date.
We investigate the potential of type II supernovae (SNe) to constrain axion-like particles (ALPs) coupled simultaneously to nucleons and electrons. ALPs coupled to nucleons can be efficiently produced in the SN core via nucleon-nucleon bremsstrahlung and, for a wide range of parameters, leave the SN unhindered, producing a large ALP flux. For masses exceeding 1 MeV, these ALPs would decay into electron-positron pairs, generating a positron flux. In the case of Galactic SNe, the annihilation of the created positrons with the electrons present in the Galaxy would contribute to the 511 keV annihilation line. Using the SPI (SPectrometer on INTEGRAL) observation of this line, allows us to exclude a wide range of the axion-electron coupling, $10^{-19} lesssim g_{ae} lesssim 10^{-11}$, for $g_{ap}sim 10^{-9}$. Additionally, ALPs from extra-galactic SNe decaying into electron-positron pairs would yield a contribution to the cosmic X-ray background. In this case, we constrain the ALP-electron coupling down to $g_{ae} sim 10^{-20}$.
We calculate the production of ultra-light axion-like particles (ALPs) in a nearby supernova progenitor. Once produced, ALPs escape from the star and a part of them is converted into photons during propagation in the Galactic magnetic field. It is found that the MeV photon flux that reaches Earth may be detectable by gamma ray telescopes for ALPs lighter than ~1 neV when Betelgeuse undergoes oxygen and silicon burning. (Non-)detection of gamma rays from a supernova progenitor with next-generation gamma ray telescopes just after pre-supernova neutrino alerts would lead to an independent constraint on ALP parameters as stringent as a SN 1987A limit.
It was recently pointed out that very energetic subclasses of supernovae (SNe), like hypernovae and superluminous SNe, might host ultra-strong magnetic fields in their core. Such fields may catalyze the production of feebly interacting particles, changing the predicted emission rates. Here we consider the case of axion-like particles (ALPs) and show that the predicted large scale magnetic fields in the core contribute significantly to the ALP production, via a coherent conversion of thermal photons. Using recent state-of-the-art SN simulations including magnetohydrodynamics, we find that if ALPs have masses $m_a sim {mathcal O}(10), rm MeV$, their emissivity via magnetic
It has been recently claimed by two different groups that the spectral modulation observed in gamma rays from Galactic pulsars and supernova remnants can be due to conversion of photons into ultra-light axion-like-particles (ALPs) in large-scale Galactic magnetic fields. While we show the required best-fit photon-ALP coupling, $g_{agamma} sim 2 times 10^{-10}$ GeV${}^{-1}$, to be consistent with constraints from observations of photon-ALPs mixing in vacuum, this is in conflict with other bounds, specifically from the CAST solar axion limit, from the helium-burning lifetime in globular clusters, and from the non-observations of gamma rays in coincidence with SN 1987A. In order to reconcile these different results, we propose that environmental effects in matter would suppress the ALP production in dense astrophysical plasma, allowing to relax previous bounds and make them compatible with photon-ALP
Axion-like particles with masses in the keV-GeV range have a profound impact on the cosmological evolution of our Universe, in particular on the abundance of light elements produced during Big Bang Nucleosynthesis. The resulting limits are complementary to searches in the laboratory and provide valuable additional information regarding the validity of a given point in parameter space. A potential drawback is that altering the cosmological history may potentially weaken or even fully invalidate these bounds. The main objective of this article is therefore to evaluate the robustness of cosmological constraints on axion-like particles in the keV-GeV region, allowing for various additional effects which may weaken the bounds of the standard scenario. Employing the latest determinations of the primordial abundances as well as information from the cosmic microwave background we find that while bounds can indeed be weakened, very relevant robust constraints remain.