A congruence on an inverse semigroup $S$ is determined uniquely by its kernel and trace. Denoting by $rho_k$ and $rho_t$ the least congruence on $S$ having the same kernel and the same trace as $rho$, respectively, and denoting by $omega$ the universal congruence on $S$, we consider the sequence $omega$, $omega_k$, $omega_t$, $(omega_k)_t$, $(omega_t)_k$, $((omega_k)_t)_k$, $((omega_t)_k)_t$, $cdots$. The quotients ${S/omega_k}$, ${S/omega_t}$, ${S/(omega_k)_t}$, ${S/(omega_t)_k}$, ${S/((omega_k)_t)_k}$, ${S/((omega_t)_k)_t}$, $cdots$, as $S$ runs over all inverse semigroups, form quasivarieties. This article explores the relationships among these quasivarieties.