Do you want to publish a course? Click here

Discovering electron transfer driven changes in chemical bonding in lead chalcogenides (PbX, where X = Te, Se, S, O)

114   0   0.0 ( 0 )
 Added by Matthias Wuttig
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Understanding the nature of chemical bonding in solids is crucial to comprehend the physical and chemical properties of a given compound. To explore changes in chemical bonding in lead chalcogenides (PbX, where X = Te, Se, S, O), a combination of property-, bond breaking- and quantum-mechanical bonding descriptors have been applied. The outcome of our explorations reveals an electron transfer driven transition from metavalent bonding in PbX (X = Te, Se, S) to iono-covalent bonding in beta-PbO. Metavalent bonding is characterized by adjacent atoms being held together by sharing about a single electron and small electron transfer (ET). The transition from metavalent to iono-covalent bonding manifests itself in clear changes in these quantum-mechanical descriptors (ES and ET), as well as in property-based descriptors (i.e. Born effective charge, dielectric function, effective coordination number (ECON) and mode-specific Grueneisen parameter, and in bond breaking descriptors (PME). Metavalent bonding collapses, if significant charge localization occurs at the ion cores (ET) and/or in the interatomic region (ES). Predominantly changing the degree of electron transfer opens possibilities to tailor materials properties such as the chemical bond and electronic polarizability, optical band gap and optical interband transitions characterized by the imaginary part of the dielectric function. Hence, the insights gained from this study highlight the technological relevance of the concept of metavalent bonding and its potential for materials design.

rate research

Read More

During the past five years the low temperature heat capacity of simple semiconductors and insulators has received renewed attention. Of particular interest has been its dependence on isotopic masses and the effect of spin- orbit coupling in ab initio calculations. Here we concentrate on the lead chalcogenides PbS, PbSe and PbTe. These materials, with rock salt structure, have different natural isotopes for both cations and anions, a fact that allows a systematic experimental and theoretical study of isotopic effects e.g. on the specific heat. Also, the large spin-orbit splitting of the 6p electrons of Pb and the 5p of Te allows, using a computer code which includes spin-orbit interaction, an investigation of the effect of this interaction on the phonon dispersion relations and the temperature dependence of the specific heat and on the lattice parameter. It is shown that agreement between measurements and calculations significantly improves when spin-orbit interaction is included.
New boron-rich sulfide B6S and selenide B6Se have been discovered from high pressure - high temperature synthesis combined with ab initio evolutionary crystal structure prediction, and studied by synchrotron X-ray diffraction and Raman spectroscopy at ambient conditions. As it follows from Rietveld refinement of powder X-ray diffraction data, both chalcogenides have orthorhombic symmetry and belongs to Pmna space group. All experimentally observed Raman bands have been attributed to the theoretically calculated phonon modes, and the mode assignment has been performed. Prediction of mechanical properties (hardness and elastic moduli) of new boron-rich chalcogenides have been made using ab initio routines, and both compounds were found to be members of a family of hard phases (Hv ~ 31 GPa).
159 - S. H. Rhim , Yong Soo Kim , 2015
Dynamic second-order nonlinear susceptibilities, $chi^{(2)}(2omega,omega,omega)equiv chi^{(2)}(omega)$, are calculated here within a fully first-principles scheme for monolayered molybdenum dichalcogenides, $2H$-MoX$_2$ (X=S,Se,Te). The absolute values of $chi^{(2)}(omega)$ across the three chalcogens critically depend on the band gap energies upon uniform strain, yielding the highest $chi^{(2)}(0)sim$ 140 pm/V for MoTe$_2$ in the static limit. Under this uniform in-plane stress, $2H$-MoX$_2$ can undergo direct-to-indirect transition of band gaps, which in turn substantially affects $chi^{(2)}(omega)$. The tunability of $chi^{(2)}(omega)$ by either compressive or tensile strain is demonstrated especially for two important experimental wavelengths, 1064 nm and 800 nm, where resonantly enhanced non-linear effects can be exploited: $chi^{(2)}$ of MoSe$_2$ and MoTe$_2$ approach $sim$800 pm/V with -2% strain at 1064 nm.
ZrSiS is a nodal-line semimetal, whose electronic band structure contains a diamond-shaped line of Dirac nodes. We carried out a comparative study on the optical conductivity of ZrSiS and related compounds ZrSiSe, ZrSiTe, ZrGeS, and ZrGeTe by reflectivity measurements over a broad frequency range combined with density functional theory calculations. The optical conductivity exhibits a distinct U shape, ending at a sharp peak at around 10000~cm$^{-1}$ for all studied compounds, except for ZrSiTe. The U shape of the optical conductivity is due to transitions between the linearly dispersing bands crossing each other along the nodal line. The sharp high-energy peak is related to transitions between almost parallel bands, and its energy position depends on the interlayer bonding correlated with the $c$/$a$ ratio, which can be tuned by either chemical or external pressure. For ZrSiTe, another pair of crossing bands appears in the vicinity of the Fermi level, corrugating the nodal-line electronic structure and leading to the observed difference in optical conductivity. The findings suggest that the Dirac physics in Zr$XY$ compounds with $X$=Si, Ge and $Y$=S, Se, Te is closely connected to the interlayer bonding.
Very recently, it has been shown that vanadium dichalcogenides (VX$_2$, X=S, Se and Te) monolayers show intrinsic ferromagnetism, and their critical temperatures are nearly to or beyond room temperature. Hence, they would have wide potential applications in next-generation nanoelectronic and spintronic devices. In this work, being inspired by a recent study we systematically perform Monte Carlo simulations based on single-site update Metropolis algorithm to investigate the hysteresis features of VX$_2$ monolayers for a wide range of temperatures up to 600 K. Our simulation results indicate that, both remanence and coercivity values tend to decrease with increasing temperature. Furthermore, it is found that hysteresis curves start to evolve from rectangular at the lower temperature regions to nearly S-shaped with increasing temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا