Do you want to publish a course? Click here

The Fate of Discrete 1-Form Symmetries in 6d

80   0   0.0 ( 0 )
 Added by Ling Lin
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Recently introduced generalized global symmetries have been useful in order to understand non-perturbative aspects of quantum field theories in four and lower dimensions. In this paper we focus on 1-form symmetries of weakly coupled 6d supersymmetric gauge theories coupled to tensor multiplets. We study their interplay with large gauge transformations for dynamical tensor fields. In a non-trivial background for the global 1-form symmetry, this leads to an ambiguity of the effective field theory partition function. This anomaly is eliminated by the inclusion of BPS strings. However, the non-trivial 1-form background can induce fractional string charges which are not compatible with Dirac quantization, and hence the symmetry is absent. The anomalous term therefore serves as a tool to detect whether the discrete 1-form symmetries are realized, which we demonstrate in explicit examples originating from string compactifications. We also corroborate this by finding that a non-trivial ambiguity is related to states which explicitly break the global 1-form symmetry, which appear as generally massive excitations of the 6d BPS strings. For 6d theories consistently coupled to gravity, this ambiguity of the partition function hints at the presence of a symmetry breaking tower of states. When the ambiguity is absent, the F-theory realization of the theories points to the gauging of the 1-form symmetries via the presence of non-trivial Mordell--Weil torsion.



rate research

Read More

We study confinement in 4d $mathcal{N}=1$ $SU(N)$ Super-Yang Mills (SYM) from a holographic point of view, focusing on the 1-form symmetry and its relation to chiral symmetry breaking. In the 5d supergravity dual, obtained by truncation of the Klebanov-Strassler solution, we identify the topological couplings that determine the 1-form symmetry and its t Hooft anomalies. One such coupling is a mixed 0-form/1-form symmetry anomaly closely related to chiral symmetry breaking in gapped confining vacua. From the dual gravity description we also identify the infra-red (IR) 4d topological field theory (TQFT), which realises chiral symmetry breaking and matches the mixed anomaly. Finally, complementing this, we derive the chiral and mixed anomalies from the Little String Theory realization of pure SYM.
We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of kappa-deformations of the Poincare algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter kappa to be derived via precision measurements of discrete symmetries and CPT.
We study higher-form symmetries in 5d quantum field theories, whose charged operators include extended operators such as Wilson line and t Hooft operators. We outline criteria for the existence of higher-form symmetries both from a field theory point of view as well as from the geometric realization in M-theory on non-compact Calabi-Yau threefolds. A geometric criterion for determining the higher-form symmetry from the intersection data of the Calabi-Yau is provided, and we test it in a multitude of examples, including toric geometries. We further check that the higher-form symmetry is consistent with dualities and is invariant under flop transitions, which relate theories with the same UV-fixed point. We explore extensions to higher-form symmetries in other compactifications of M-theory, such as $G_2$-holonomy manifolds, which give rise to 4d $mathcal{N}=1$ theories.
Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair) at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.
We study the phenomenon of discrete symmetry breaking during the inflationary epoch, using a model-independent approach based on the effective field theory of inflation. We work in a context where both time reparameterization symmetry and spatial diffeomorphism invariance can be broken during inflation. We determine the leading derivative operators in the quadratic action for fluctuations that break parity and time-reversal. Within suitable approximations, we study their consequences for the dynamics of linearized fluctuations. Both in the scalar and tensor sectors, we show that such operators can lead to new direction-dependent phases for the modes involved. They do not affect the power spectra, but can have consequences for higher correlation functions. Moreover, a small quadrupole contribution to the sound speed can be generated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا