No Arabic abstract
Atom probe tomography (APT) analysis conditions play a major role in the composition measurement accuracy. Preferential evaporation, which significantly biases apparent composition, more than other well-known phenomena in APT, is strongly connected to those analysis conditions. One way to optimize them, in order to have the most accurate measurement, is therefore to be able to predict and then to estimate their influence on the apparent composition. An analytical model is proposed to quantify the preferential evaporation. This model is applied to three different alloys: NiCu, FeCrNi and FeCu. The model explains not only the analysis temperature dependence, as in already existing model, but also the dependence to the pulse fraction and the pulse frequency. Moreover, the model can also provide energetic constant directly linked to energy barrier, required to field evaporate atom from the sample surface. 2
Understanding the structure and chemical composition at the liquid-nanoparticle (NP) interface is crucial for a wide range of physical, chemical and biological processes. In this study, direct imaging of the liquid-NP interface by atom probe tomography (APT) is reported for the first time, which reveals the distributions and the interactions of key atoms and molecules in this critical domain. The APT specimen is prepared by controlled graphene encapsulation of the solution containing nanoparticles on a metal tip, with an end radius in the range of 50 nm to allow field ionization and evaporation. Using Au nanoparticles (AuNPs) in suspension as an example, analysis of the mass spectrum and three-dimensional (3D) chemical maps from APT provides a detailed image of the water-gold interface with near-atomic resolution. At the water-gold interface, the formation of an electrical double layer (EDL) rich in water (H2O) molecules has been observed, which results from the charge from the binding between the trisodium-citrate layer and the AuNP. In the bulk water region, the density of reconstructed H2O has been shown to be consistent, reflecting a highly packed density of H2O molecules after graphene encapsulation. This study is the first demonstration of direct imaging of liquid-NP interface using APT with results providing an atom-by-atom 3D dissection of the liquid-NP interface.
Several visualization schemes have been developed for imaging materials at the atomic level through atom probe tomography. The main shortcoming of these tools is their inability to parallel process data using multi-core computing units to tackle the problem of larger data sets. This critically handicaps the ability to make a quantitative interpretation of spatial correlations in chemical composition, since a significant amount of the data is missed during subsequent analysis. In addition, since these visualization tools are not open-source software there is always a problem with developing a common language for the interpretation of data. In this contribution we present results of our work on using an open-source advanced interactive visualization software tool, which overcomes the difficulty of visualizing larger data sets by supporting parallel rendering on a graphical user interface or script user interface and permits quantitative analysis of atom probe tomography data in real time. This advancement allows materials scientists a codesign approach to making, measuring and modeling new and nanostructured materials by providing a direct feedback to the fabrication and designing of samples in real time.
Atom probe tomography (APT) analysis of chemically pure nanofilms of zero-valent iron (Fe(0), or ZVI) and their thermal oxide nano-overlayers reveals the presence of dendritic iron oxide features that extend from the oxide nano-overlayer surface into the ZVI bulk. The dendrites are observed by APT to be in the 5 nm x 10 nm size range and form quickly under natural atmospheric conditions. Their growth into the ZVI lalyer is, within the limit of our three-month long study, self-limiting (i.e. their initial growth appears to quickly discontinue). The atomistic views presented here shed first light on the atmospheric corrosion process of Fe(0)-bearing engineered nanostructures and their surfaces in the limit of low bulk impurities. Possible roles of the newly identified oxidized iron dendrites are also discussed in the context of passivation processes limiting technological applications of Fe(0).
Alnico is a prime example of a finely tuned nanostructure whose magnetic properties are intimately connected to magnetic annealing (MA) during spinodal transformation and subsequent lower temperature annealing (draw) cycles. Using a combination of transmission electron microscopy and atom probe tomography, we show how these critical processing steps affect the local composition and nanostructure evolution with impact on magnetic properties. The nearly 2-fold increase of intrinsic coercivity ($H_text{ci}$) during the draw cycle is not adequately explained by chemical refinement of the spinodal phases. Instead, increased Fe-Co phase ($alpha_1$) isolation, development of Cu-rich spheres/rods/blades and additional $alpha_1$ rod precipitation that occurs during the MA and draw, likely play a key role in $H_text{ci}$ enhancement. Chemical ordering of the Al-Ni-phase ($alpha_2$) and formation of Ni-rich ($alpha_3$) may also contribute. Unraveling of the subtle effect of these nano-scaled features is crucial to understanding on how to improve shape anisotropy in alnico magnets.
We address a novel method for analytical determinations that combines simplicity, rapidity, low consumption of chemicals, and portability with high analytical performance taking into account parameters such as precision, linearity, robustness, and accuracy. This approach relies on the effect of the analyte content over the Gibbs free energy of dispersions, affecting the thermodynamic stabilization of emulsions or Winsor systems to form microemulsions (MEs). Such phenomenon was expressed by the minimum volume fraction of amphiphile required to form microemulsion, which was the analytical signal of the method. The performed studies were: phase behavior, droplet dimension by dynamic light scattering, analytical curve, and robustness tests. The reliability of the method was evaluated by determining water in ethanol fuels and monoethylene glycol in complex samples of liquefied natural gas. The dispersions were composed of water-chlorobenzene (water analysis) and water-oleic acid (monoethylene glycol analysis) with ethanol as the hydrotrope phase. The experiments to determine water demonstrated that the analytical performance depends on the composition of ME. The linear range was fairly broad with limits of linearity up to 70.00% water in ethanol. For monoethylene glycol in water the linear range was observed throughout the volume fraction of analyte. The natural gas samples provided by the Petrobras exhibited color, particulate material, high ionic strength, and diverse compounds as metals, carboxylic acids, and anions. The method allowed accurate measures bypassing steps such as extraction, preconcentration, and dilution of the sample. In addition, the levels of robustness were promising. This parameter was evaluated by investigating the effect of (i) deviations in volumetric preparation of the dispersions and (ii) changes in temperature over the analyte contents recorded by the method.