Characterising the optical response of ultra-low-noise far-infrared 60-110 $mu$m transition edge sensors


Abstract in English

Far-infrared Transition Edge Sensors (TESs) are being developed for the SAFARI grating spectrometer on the cooled-aperture space telescope SPICA. In support of this work, we have devised a cryogenic (90 mK) test facility for carrying out precision optical measurements on ultra-low-noise TESs. Although our facility is suitable for the whole of the SAFARI wavelength range, 34-230 $mu$m, we focus on a representative set of measurements at 60-110 $mu$m using a device having a Noise Equivalent Power (NEP) of 0.32 $mathrm{aW/sqrt{Hz}}$. The system is able to perform a range of measurements: (i) Dark electrical characterisation. (ii) Optical efficiency with respect to a partially coherent beam having a modal composition identical to that of an ideal imaging telescope. (iii) Optical saturation and dynamic range. (iv) Fast optical transient response to a modulated thermal source. (v) Optical transient response in the presence of high-level background loading. We describe dark measurements to determine the operating characteristics of a TES, and then compare predicted optical behaviour with measured optical behaviour. By comparing electrical and optical transient response, we were able to observe thermalisation in the device. We comment on the challenge of eliminating stray light.

Download