Do you want to publish a course? Click here

Classification of diffraction patterns in single particle imaging experiments performed at X-ray free-electron lasers using a convolutional neural network

71   0   0.0 ( 0 )
 Added by Ivan Vartanyants
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Single particle imaging (SPI) is a promising method for native structure determination which has undergone a fast progress with the development of X-ray Free-Electron Lasers. Large amounts of data are collected during SPI experiments, driving the need for automated data analysis. The necessary data analysis pipeline has a number of steps including binary object classification (single versus multiple hits). Classification and object detection are areas where deep neural networks currently outperform other approaches. In this work, we use the fast object detector networks YOLOv2 and YOLOv3. By exploiting transfer learning, a moderate amount of data is sufficient for training of the neural network. We demonstrate here that a convolutional neural network (CNN) can be successfully used to classify data from SPI experiments. We compare the results of classification for the two different networks, with different depth and architecture, by applying them to the same SPI data with different data representation. The best results are obtained for YOLOv2 color images linear scale classification, which shows an accuracy of about 97% with the precision and recall of about 52% and 61%, respectively, which is in comparison to manual data classification.



rate research

Read More

One of the outstanding analytical problems in X-ray single particle imaging (SPI) is the classification of structural heterogeneity, which is especially difficult given the low signal-to-noise ratios of individual patterns and that even identical objects can yield patterns that vary greatly when orientation is taken into consideration. We propose two methods which explicitly account for this orientation-induced variation and can robustly determine the structural landscape of a sample ensemble. The first, termed common-line principal component analysis (PCA) provides a rough classification which is essentially parameter-free and can be run automatically on any SPI dataset. The second method, utilizing variation auto-encoders (VAEs) can generate 3D structures of the objects at any point in the structural landscape. We implement both these methods in combination with the noise-tolerant expand-maximize-compress (EMC) algorithm and demonstrate its utility by applying it to an experimental dataset from gold nanoparticles with only a few thousand photons per pattern and recover both discrete structural classes as well as continuous deformations. These developments diverge from previous approaches of extracting reproducible subsets of patterns from a dataset and open up the possibility to move beyond studying homogeneous sample sets and study open questions on topics such as nanocrystal growth and dynamics as well as phase transitions which have not been externally triggered.
Single particle diffraction imaging experiments at free-electron lasers (FEL) have a great potential for structure determination of reproducible biological specimens that can not be crystallized. One of the challenges in processing the data from such an experiment is to determine correct orientation of each diffraction pattern from samples randomly injected in the FEL beam. We propose an algorithm (see also O. Yefanov et al., Photon Science - HASYLAB Annual Report 2010) that can solve this problem and can be applied to samples from tens of nanometers to microns in size, measured with sub-nanometer resolution in the presence of noise. This is achieved by the simultaneous analysis of a large number of diffraction patterns corresponding to different orientations of the particles. The algorithms efficiency is demonstrated for two biological samples, an artificial protein structure without any symmetry and a virus with icosahedral symmetry. Both structures are few tens of nanometers in size and consist of more than 100 000 non-hydrogen atoms. More than 10 000 diffraction patterns with Poisson noise were simulated and analyzed for each structure. Our simulations indicate the possibility to achieve resolution of about 3.3 {AA} at 3 {AA} wavelength and incoming flux of 10^{12} photons per pulse focused to 100times 100 nm^2.
The first experimental data from single-particle scattering experiments from free electron lasers (FELs) are now becoming available. The first such experiments are being performed on relatively large objects such as viruses, which produce relatively low-resolution, low-noise diffraction patterns in so-called diffract-and-destroy experiments. We describe a very simple test on the angular correlations of measured diffraction data to determine if the scattering is from an icosahedral particle. If this is confirmed, the efficient algorithm proposed can then combine diffraction data from multiple shots of particles in random unknown orientations to generate a full 3D image of the icosahedral particle. We demonstrate this with a simulation for the satellite tobacco necrosis virus (STNV), the atomic coordinates of whose asymmetric unit is given in Protein Data Bank entry 2BUK.
As a critical component of coherent X-ray diffraction imaging (CDI), phase retrieval has been extensively applied in X-ray structural science to recover the 3D morphological information inside measured particles. Despite meeting all the oversampling requirements of Sayre and Shannon, current phase retrieval approaches still have trouble achieving a unique inversion of experimental data in the presence of noise. Here, we propose to overcome this limitation by incorporating a 3D Machine Learning (ML) model combining (optional) supervised training with unsupervised refinement. The trained ML model can rapidly provide an immediate result with high accuracy, which will benefit real-time experiments. More significantly, the Neural Network model can be used without any prior training to learn the missing phases of an image based on minimization of an appropriate loss function alone. We demonstrate significantly improved performance with experimental Bragg CDI data over traditional iterative phase retrieval algorithms.
Current Flash X-ray single-particle diffraction Imaging (FXI) experiments, which operate on modern X-ray Free Electron Lasers (XFELs), can record millions of interpretable diffraction patterns from individual biomolecules per day. Due to the stochastic nature of the XFELs, those patterns will to a varying degree include scatterings from contaminated samples. Also, the heterogeneity of the sample biomolecules is unavoidable and complicates data processing. Reducing the data volumes and selecting high-quality single-molecule patterns are therefore critical steps in the experimental set-up. In this paper, we present two supervised template-based learning methods for classifying FXI patterns. Our Eigen-Image and Log-Likelihood classifier can find the best-matched template for a single-molecule pattern within a few milliseconds. It is also straightforward to parallelize them so as to fully match the XFEL repetition rate, thereby enabling processing at site.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا