Do you want to publish a course? Click here

Unusual temperature evolution of band structure of Bi(111) studied by angle-resolved photoemission spectroscopy and density functional theory

212   0   0.0 ( 0 )
 Added by Seigo Souma
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have performed angle-resolved photoemission spectroscopy of Bi(111) thin films grown on Si(111), and investigated the evolution of band structure with temperature. We revealed an unexpectedly large temperature variation of the energy dispersion for the Rashba-split surface state and the quantum-well states, as seen in the highly momentum-dependent energy shift as large as 0.1 eV. A comparison of the band dispersion between experiment and first-principles band-structure calculations suggests that the interlayer spacing at the topmost Bi bilayer expands upon temperature increase. The present study provides a new pathway for investigating the interplay between lattice and electronic states through the temperature dependence of band structure.



rate research

Read More

We have performed high-resolution angle-resolved photoemission spectroscopy (ARPES) on trigonal tellurium consisting of helical chains in the crystal. Through the band-structure mapping in the three-dimensional Brillouin zone, we found a definitive evidence for the band splitting originating from the chiral nature of crystal. A direct comparison of the band dispersion between the ARPES results and the first-principles band-structure calculations suggests the presence of Weyl nodes and tiny spin-polarized hole pockets around the H point. The present result opens a pathway toward studying the interplay among crystal symmetry, band structure, and exotic physical properties in chiral crystals.
We studied the electronic band structure of pulsed laser deposition (PLD) grown (111)-oriented SrRuO$_3$ (SRO) thin films using textit{in situ} angle-resolved photoemission spectroscopy (ARPES) technique. We observed previously unreported, light bands with a renormalized quasiparticle effective mass of about 0.8$m_{e}$. The electron-phonon coupling underlying this mass renormalization yields a characteristic kink in the band dispersion. The self-energy analysis using the Einstein model suggests five optical phonon modes covering an energy range 44 to 90 meV contribute to the coupling. Besides, we show that the quasiparticle spectral intensity at the Fermi level is considerably suppressed, and two prominent peaks appear in the valance band spectrum at binding energies of 0.8 eV and 1.4 eV, respectively. We discuss the possible implications of these observations. Overall, our work demonstrates that high-quality thin films of oxides with large spin-orbit coupling can be grown along the polar (111) orientation by the PLD technique, enabling textit{in situ} electronic band structure study. This could allow for characterizing the thickness-dependent evolution of band structure of (111) heterostructures$-$a prerequisite for exploring possible topological quantum states in the bilayer limit.
100 - Q. Yao , Y. P. Du , X. J. Yang 2016
PtBi2 with a layered trigonal crystal structure was recently reported to exhibit an unconventional large linear magnetoresistance, while the mechanism involved is still elusive. Using high resolution angle-resolved photoemission spectroscopy, we present a systematic study on its bulk and surface electronic structure. Through careful comparison with first-principle calculations, our experiment distinguishes the low-lying bulk bands from entangled surface states, allowing the estimation of the real stoichiometry of samples. We find significant electron doping in PtBi2, implying a substantial Bi deficiency induced disorder therein. We discover a Dirac-cone-like surface state on the boundary of the Brillouin zone, which is identified as an accidental Dirac band without topological protection. Our findings exclude quantum-limit-induced linear band dispersion as the cause of the unconventional large linear magnetoresistance.
The electronic structure of surfaces plays a key role in the properties of quantum devices. However, surfaces are also the most challenging to simulate and engineer. Here, we study the electronic structure of InAs(001), InAs(111), and InSb(110) surfaces using a combination of density functional theory (DFT) and angle-resolved photoemission spectroscopy (ARPES). We were able to perform large-scale first principles simulations and capture effects of different surface reconstructions by using DFT calculations with a machine-learned Hubbard U correction [npj Comput. Mater. 6, 180 (2020)]. To facilitate direct comparison with ARPES results, we implemented a bulk unfolding scheme by projecting the calculated band structure of a supercell surface slab model onto the bulk primitive cell. For all three surfaces, we find a good agreement between DFT calculations and ARPES. For InAs(001), the simulations clarify the effect of the surface reconstruction. Different reconstructions are found to produce distinctive surface states. For InAs(111) and InSb(110), the simulations help elucidate the effect of oxidation. Owing to larger charge transfer from As to O than from Sb to O, oxidation of InAs(111) leads to significant band bending and produces an electron pocket, whereas oxidation of InSb(110) does not. Our combined theoretical and experimental results may inform the design of quantum devices based on InAs and InSb semiconductors, e.g., topological qubits utilizing the Majorana zero modes.
129 - Fengfeng Zhu , W. X. Jiang , P. Li 2016
Electronic structure of single crystalline Ba(Zn$_{0.875}$Mn$_{0.125}$)$_{2}$As$_{2}$, parent compound of the recently founded high-temperature ferromagnetic semiconductor, was studied by high-resolution photoemission spectroscopy (ARPES). Through systematically photon energy and polarization dependent measurements, the energy bands along the out-of-plane and in-plane directions were experimentally determined. Except the localized states of Mn, the measured band dispersions agree very well with the first-principle calculations of undoped BaZn$_{2}$As$_{2}$. A new feature related to Mn 3d states was identified at the binding energies of about -1.6 eV besides the previously observed feature at about -3.3 eV. We suggest that the hybridization between Mn and As orbitals strongly enhanced the density of states around -1.6 eV. Although our resolution is much better compared with previous soft X-ray photoemission experiments, no clear hybridization gap between Mn 3d states and the valence bands proposed by previous model calculations was detected.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا