Do you want to publish a course? Click here

Faster Person Re-Identification

132   0   0.0 ( 0 )
 Added by Guan-An Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Fast person re-identification (ReID) aims to search person images quickly and accurately. The main idea of recent fast ReID methods is the hashing algorithm, which learns compact binary codes and performs fast Hamming distance and counting sort. However, a very long code is needed for high accuracy (e.g. 2048), which compromises search speed. In this work, we introduce a new solution for fast ReID by formulating a novel Coarse-to-Fine (CtF) hashing code search strategy, which complementarily uses short and long codes, achieving both faster speed and better accuracy. It uses shorter codes to coarsely rank broad matching similarities and longer codes to refine only a few top candidates for more accurate instance ReID. Specifically, we design an All-in-One (AiO) framework together with a Distance Threshold Optimization (DTO) algorithm. In AiO, we simultaneously learn and enhance multiple codes of different lengths in a single model. It learns multiple codes in a pyramid structure, and encourage shorter codes to mimic longer codes by self-distillation. DTO solves a complex threshold search problem by a simple optimization process, and the balance between accuracy and speed is easily controlled by a single parameter. It formulates the optimization target as a $F_{beta}$ score that can be optimised by Gaussian cumulative distribution functions. Experimental results on 2 datasets show that our proposed method (CtF) is not only 8% more accurate but also 5x faster than contemporary hashing ReID methods. Compared with non-hashing ReID methods, CtF is $50times$ faster with comparable accuracy. Code is available at https://github.com/wangguanan/light-reid.



rate research

Read More

Most state-of-the-art person re-identification (re-id) methods depend on supervised model learning with a large set of cross-view identity labelled training data. Even worse, such trained models are limited to only the same-domain deployment with significantly degraded cross-domain generalization capability, i.e. domain specific. To solve this limitation, there are a number of recent unsupervised domain adaptation and unsupervised learning methods that leverage unlabelled target domain training data. However, these methods need to train a separate model for each target domain as supervised learning methods. This conventional {em train once, run once} pattern is unscalable to a large number of target domains typically encountered in real-world deployments. We address this problem by presenting a train once, run everywhere pattern industry-scale systems are desperate for. We formulate a universal model learning approach enabling domain-generic person re-id using only limited training data of a {em single} seed domain. Specifically, we train a universal re-id deep model to discriminate between a set of transformed person identity classes. Each of such classes is formed by applying a variety of random appearance transformations to the images of that class, where the transformations simulate the camera viewing conditions of any domains for making the model training domain generic. Extensive evaluations show the superiority of our method for universal person re-id over a wide variety of state-of-the-art unsupervised domain adaptation and unsupervised learning re-id methods on five standard benchmarks: Market-1501, DukeMTMC, CUHK03, MSMT17, and VIPeR.
Person re-identification (re-id) suffers from a serious occlusion problem when applied to crowded public places. In this paper, we propose to retrieve a full-body person image by using a person image with occlusions. This differs significantly from the conventional person re-id problem where it is assumed that person images are detected without any occlusion. We thus call this new problem the occluded person re-identitification. To address this new problem, we propose a novel Attention Framework of Person Body (AFPB) based on deep learning, consisting of 1) an Occlusion Simulator (OS) which automatically generates artificial occlusions for full-body person images, and 2) multi-task losses that force the neural network not only to discriminate a persons identity but also to determine whether a sample is from the occluded data distribution or the full-body data distribution. Experiments on a new occluded person re-id dataset and three existing benchmarks modified to include full-body person images and occluded person images show the superiority of the proposed method.
Most of current person re-identification (ReID) methods neglect a spatial-temporal constraint. Given a query image, conventional methods compute the feature distances between the query image and all the gallery images and return a similarity ranked table. When the gallery database is very large in practice, these approaches fail to obtain a good performance due to appearance ambiguity across different camera views. In this paper, we propose a novel two-stream spatial-temporal person ReID (st-ReID) framework that mines both visual semantic information and spatial-temporal information. To this end, a joint similarity metric with Logistic Smoothing (LS) is introduced to integrate two kinds of heterogeneous information into a unified framework. To approximate a complex spatial-temporal probability distribution, we develop a fast Histogram-Parzen (HP) method. With the help of the spatial-temporal constraint, the st-ReID model eliminates lots of irrelevant images and thus narrows the gallery database. Without bells and whistles, our st-ReID method achieves rank-1 accuracy of 98.1% on Market-1501 and 94.4% on DukeMTMC-reID, improving from the baselines 91.2% and 83.8%, respectively, outperforming all previous state-of-the-art methods by a large margin.
In this work, we present a deep convolutional pyramid person matching network (PPMN) with specially designed Pyramid Matching Module to address the problem of person re-identification. The architecture takes a pair of RGB images as input, and outputs a similiarity value indicating whether the two input images represent the same person or not. Based on deep convolutional neural networks, our approach first learns the discriminative semantic representation with the semantic-component-aware features for persons and then employs the Pyramid Matching Module to match the common semantic-components of persons, which is robust to the variation of spatial scales and misalignment of locations posed by viewpoint changes. The above two processes are jointly optimized via a unified end-to-end deep learning scheme. Extensive experiments on several benchmark datasets demonstrate the effectiveness of our approach against the state-of-the-art approaches, especially on the rank-1 recognition rate.
We propose a densely semantically aligned person re-identification framework. It fundamentally addresses the body misalignment problem caused by pose/viewpoint variations, imperfect person detection, occlusion, etc. By leveraging the estimation of the dense semantics of a person image, we construct a set of densely semantically aligned part images (DSAP-images), where the same spatial positions have the same semantics across different images. We design a two-stream network that consists of a main full image stream (MF-Stream) and a densely semantically-aligned guiding stream (DSAG-Stream). The DSAG-Stream, with the DSAP-images as input, acts as a regulator to guide the MF-Stream to learn densely semantically aligned features from the original image. In the inference, the DSAG-Stream is discarded and only the MF-Stream is needed, which makes the inference system computationally efficient and robust. To the best of our knowledge, we are the first to make use of fine grained semantics to address the misalignment problems for re-ID. Our method achieves rank-1 accuracy of 78.9% (new protocol) on the CUHK03 dataset, 90.4% on the CUHK01 dataset, and 95.7% on the Market1501 dataset, outperforming state-of-the-art methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا