No Arabic abstract
The Listen, Attend and Spell (LAS) model and other attention-based automatic speech recognition (ASR) models have known limitations when operated in a fully online mode. In this paper, we analyze the online operation of LAS models to demonstrate that these limitations stem from the handling of silence regions and the reliability of online attention mechanism at the edge of input buffers. We propose a novel and simple technique that can achieve fully online recognition while meeting accuracy and latency targets. For the Mandarin dictation task, our proposed approach can achieve a character error rate in online operation that is within 4% relative to an offline LAS model. The proposed online LAS model operates at 12% lower latency relative to a conventional neural network hidden Markov model hybrid of comparable accuracy. We have validated the proposed method through a production scale deployment, which, to the best of our knowledge, is the first such deployment of a fully online LAS model.
The Transformer self-attention network has recently shown promising performance as an alternative to recurrent neural networks in end-to-end (E2E) automatic speech recognition (ASR) systems. However, Transformer has a drawback in that the entire input sequence is required to compute self-attention. We have proposed a block processing method for the Transformer encoder by introducing a context-aware inheritance mechanism. An additional context embedding vector handed over from the previously processed block helps to encode not only local acoustic information but also global linguistic, channel, and speaker attributes. In this paper, we extend it towards an entire online E2E ASR system by introducing an online decoding process inspired by monotonic chunkwise attention (MoChA) into the Transformer decoder. Our novel MoChA training and inference algorithms exploit the unique properties of Transformer, whose attentions are not always monotonic or peaky, and have multiple heads and residual connections of the decoder layers. Evaluations of the Wall Street Journal (WSJ) and AISHELL-1 show that our proposed online Transformer decoder outperforms conventional chunkwise approaches.
Comprehending the overall intent of an utterance helps a listener recognize the individual words spoken. Inspired by this fact, we perform a novel study of the impact of explicitly incorporating intent representations as additional information to improve a recurrent neural network-transducer (RNN-T) based automatic speech recognition (ASR) system. An audio-to-intent (A2I) model encodes the intent of the utterance in the form of embeddings or posteriors, and these are used as auxiliary inputs for RNN-T training and inference. Experimenting with a 50k-hour far-field English speech corpus, this study shows that when running the system in non-streaming mode, where intent representation is extracted from the entire utterance and then used to bias streaming RNN-T search from the start, it provides a 5.56% relative word error rate reduction (WERR). On the other hand, a streaming system using per-frame intent posteriors as extra inputs for the RNN-T ASR system yields a 3.33% relative WERR. A further detailed analysis of the streaming system indicates that our proposed method brings especially good gain on media-playing related intents (e.g. 9.12% relative WERR on PlayMusicIntent).
Automatic speech recognition (ASR) systems promise to deliver objective interpretation of human speech. Practice and recent evidence suggests that the state-of-the-art (SotA) ASRs struggle with the large variation in speech due to e.g., gender, age, speech impairment, race, and accents. Many factors can cause the bias of an ASR system. Our overarching goal is to uncover bias in ASR systems to work towards proactive bias mitigation in ASR. This paper is a first step towards this goal and systematically quantifies the bias of a Dutch SotA ASR system against gender, age, regional accents and non-native accents. Word error rates are compared, and an in-depth phoneme-level error analysis is conducted to understand where bias is occurring. We primarily focus on bias due to articulation differences in the dataset. Based on our findings, we suggest bias mitigation strategies for ASR development.
Although attention based end-to-end models have achieved promising performance in speech recognition, the multi-pass forward computation in beam-search increases inference time cost, which limits their practical applications. To address this issue, we propose a non-autoregressive end-to-end speech recognition system called LASO (listen attentively, and spell once). Because of the non-autoregressive property, LASO predicts a textual token in the sequence without the dependence on other tokens. Without beam-search, the one-pass propagation much reduces inference time cost of LASO. And because the model is based on the attention based feedforward structure, the computation can be implemented in parallel efficiently. We conduct experiments on publicly available Chinese dataset AISHELL-1. LASO achieves a character error rate of 6.4%, which outperforms the state-of-the-art autoregressive transformer model (6.7%). The average inference latency is 21 ms, which is 1/50 of the autoregressive transformer model.
Self-attention networks (SAN) have been introduced into automatic speech recognition (ASR) and achieved state-of-the-art performance owing to its superior ability in capturing long term dependency. One of the key ingredients is the self-attention mechanism which can be effectively performed on the whole utterance level. In this paper, we try to investigate whether even more information beyond the whole utterance level can be exploited and beneficial. We propose to apply self-attention layer with augmented memory to ASR. Specifically, we first propose a variant model architecture which combines deep feed-forward sequential memory network (DFSMN) with self-attention layers to form a better baseline model compared with a purely self-attention network. Then, we propose and compare two kinds of additional memory structures added into self-attention layers. Experiments on large-scale LVCSR tasks show that on four individual test sets, the DFSMN-SAN architecture outperforms vanilla SAN encoder by 5% relatively in character error rate (CER). More importantly, the additional memory structure provides further 5% to 11% relative improvement in CER.