Vectorized Hankel Lift: A Convex Approach for Blind Super-Resolution of Point Sources


Abstract in English

We consider the problem of resolving $ r$ point sources from $n$ samples at the low end of the spectrum when point spread functions (PSFs) are not known. Assuming that the spectrum samples of the PSFs lie in low dimensional subspace (let $s$ denote the dimension), this problem can be reformulated as a matrix recovery problem, followed by location estimation. By exploiting the low rank structure of the vectorized Hankel matrix associated with the target matrix, a convex approach called Vectorized Hankel Lift is proposed for the matrix recovery. It is shown that $ngtrsim rslog^4 n$ samples are sufficient for Vectorized Hankel Lift to achieve the exact recovery. For the location retrieval from the matrix, applying the single snapshot MUSIC method within the vectorized Hankel lift framework corresponds to the spatial smoothing technique proposed to improve the performance of the MMV MUSIC for the direction-of-arrival (DOA) estimation.

Download