No Arabic abstract
Heavy axion-like particles (ALPs), with masses $m_a gtrsim 100$ keV, coupled with photons, would be copiously produced in a supernova (SN) core via Primakoff process and photon coalescence. Using a state-of-the-art SN model, we revisit the energy-loss SN 1987A bounds on axion-photon coupling. Moreover, we point out that heavy ALPs with masses $m_a gtrsim 100$ MeV and axion-photon coupling $g_{agamma} gtrsim 4 times 10^{-9}$ GeV$^{-1}$ would decay into photons behind the shock-wave producing a possible enhancement in the energy deposition that would boost the SN shock revival.
Heavy sterile neutrinos with masses ${mathcal O}(100)$ MeV mixing with active neutrinos can be produced in the core of a collapsing supernova (SN). In order to avoid an excessive energy loss, shortening the observed duration of the SN 1987A neutrino burst, we show that the active-sterile neutrino mixing angle should satisfy $sin^2 theta lesssim 5 times 10^{-7}$. For a mixing with tau flavour, this bound is much stronger than the ones from laboratory searches. Moreover, we show that in the viable parameter space the decay of such heavy sterile neutrinos in the SN envelope would lead to a very energetic flux of daughter active neutrinos; if not too far below current limits, this would be detectable in large underground neutrino observatories, like Super-Kamiokande, as a (slightly time-delayed) high-energy bump in the spectrum of a forthcoming Galactic SN event.
We have been working within the fundamental paradigm that core collapse supernovae (CCSNe) may be neutrino driven, since the first suggestion of this by Colgate and White nearly five decades ago. Computational models have become increasingly sophisticated, first in one spatial dimension assuming spherical symmetry, then in two spatial dimensions assuming axisymmetry, and now in three spatial dimensions with no imposed symmetries. The increase in the number of spatial dimensions has been accompanied by an increase in the physics included in the models, and an increase in the sophistication with which this physics has been modeled. Computation has played an essential role in the development of CCSN theory, not simply for the obvious reason that such multidimensional, multi-physics, nonlinear events cannot possibly be fully captured analytically, but for its role in discovery. In particular, the discovery of the standing accretion shock instability (SASI) through computation about a decade ago has impacted all simulations performed since then. Today, we appear to be at a threshold, where neutrinos, neutrino-driven convection, and the SASI, working together over time scales significantly longer than had been anticipated in the past, are able to generate explosions, and in some cases, robust explosions, in a number of axisymmetric models. But how will this play out in three dimensions? Early results from the first three-dimensional (3D), multi-physics simulation of the Oak Ridge group are promising. I will discuss the essential components of todays models and the requirements of realistic CCSN modeling, present results from our one-, two-, and three-dimensional models, place our models in context with respect to other efforts around the world, and discuss short- and long-term next steps.
Axion-like particles with masses in the keV-GeV range have a profound impact on the cosmological evolution of our Universe, in particular on the abundance of light elements produced during Big Bang Nucleosynthesis. The resulting limits are complementary to searches in the laboratory and provide valuable additional information regarding the validity of a given point in parameter space. A potential drawback is that altering the cosmological history may potentially weaken or even fully invalidate these bounds. The main objective of this article is therefore to evaluate the robustness of cosmological constraints on axion-like particles in the keV-GeV region, allowing for various additional effects which may weaken the bounds of the standard scenario. Employing the latest determinations of the primordial abundances as well as information from the cosmic microwave background we find that while bounds can indeed be weakened, very relevant robust constraints remain.
We update the globular cluster bound on massive ($m_a$ up to a few 100 keV) axion-like particles (ALP) interacting with photons. The production of such particles in the stellar core is dominated by the Primakoff $gamma + Zeto Ze +a$ and by the photon coalescence process $gamma+gammato a$. The latter, which is predominant at high masses, was not included in previous estimations. Furthermore, we account for the possibility that axions decay inside the stellar core, a non-negligible effect at the masses and couplings we are considering here. Consequently, our result modifies considerably the previous constraint, especially for $m_a gtrsim 50$ keV. The combined constraints from Globular Cluster stars, SN 1987A, and beam-dump experiments leave a small triangularly shaped region open in the parameter space around $m_a sim 0.5-1,$ MeV and $g_{agamma} sim 10^{-5}$ GeV$^{-1}$. This is informally known as the ALP cosmological triangle since it can be excluded only using standard cosmological arguments. As we shall mention, however, there are viable cosmological models that are compatible with axion-like particles with parameters in such region. We also discuss possibilities to explore the cosmological triangle experimentally in upcoming accelerator experiments.
There are now $sim$20 multi-dimensional core-collapse supernova (CCSN) simulations that explode. However, these simulations have explosion energies that are a few times $10^{50}$ erg, not $10^{51}$ erg. In this manuscript, we compare the inferred explosion energies of these simulations and observations of 38 SN~IIP. Assuming a log-normal distribution, the mean explosion energy for the observations is $mu_{rm obs} = -0.13pm 0.05$ ($log_{10}(E/10^{51}, {rm erg})$) and the width is $sigma_{rm obs} = 0.21^{+0.05}_{-0.04}$. Only three CCSN codes have sufficient simulations to compare with observations: CHIMERA, CoCoNuT-FMT, and FORNAX. Currently, FORNAX has the largest sample of simulations. The two-dimensional FORNAX simulations show a correlation between explosion energy and progenitor mass, ranging from linear to quadratic, $E_{rm sim} propto M^{1-2}$; this correlation is consistent with inferences from observations. In addition, we infer the ratio of the observed-to-simulated explosion energies, $Delta=log_{10}(E_{rm obs}/E_{rm sim})$. For the CHIMERA set, $Delta=0.33pm0.06$; for CoCoNuT-FMT, $Delta=0.62pm0.05$; for FORNAX2D, $Delta=0.73pm0.05$, and for FORNAX3D, $Delta=0.95pm0.06$. On average, the simulations are less energetic than inferred energies from observations ($Delta approx 0.7$), but we also note that the variation among the simulations (max($Delta$)-min($Delta$) $approx 0.6$) is as large as this average offset. This suggests that further improvements to the simulations could resolve the discrepancy. Furthermore, both the simulations and the observations are heavily biased. In this preliminary comparison, we model these biases, but to more reliably compare the explosion energies, we recommend strategies to un-bias both the simulations and observations.