No Arabic abstract
We study the environment of Sgr A* using spectral and continuum observations with the ALMA and VLA. Our analysis of sub-arcsecond H30alpha, H39alpha, H52alpha and H56alpha line emission towards Sgr A* confirm the recently published broad peak ~500 km/s~spectrum toward Sgr~A*. We also detect emission at more extreme radial velocities peaking near -2500 and 4000 km/s, within 0.2. We then present broad band radio continuum images at multiple frequencies on scales from arcseconds to arcminutes. A number of elongated continuum structures lie parallel to the Galactic plane, extending from ~0.4 to 10. We note a nonthermal elongated structure on an arcminute scale emanating from Sgr A* at low frequencies between 1 and 1.4 GHz where thermal emission from the mini-spiral is depressed by optical depth effects. The position angle of this elongated structure and the sense of motion of ionized features with respect to Sgr A* suggest a symmetric, collimated jet emerging from Sgr A* with an opening angle of ~30deg and a position angle of ~60deg punching through the medium before accelerating a significant fraction of the orbiting ionized gas to high velocities. The jet with estimated mass flow rate ~1.4x10^{-5} solar mass/yr emerges perpendicular to the equatorial plane of the accretion flow near the event horizon of Sgr A* and runs along the Galactic plane. To explain a number of east-west features near Sgr A*, we also consider the possibility of an outflow component with a wider-angle launched from the accretion flow at larger radii.
The compact radio source Sgr A* is coincident with a 4 million solar mass black hole at the dynamical center of the Galaxy and is surrounded by dense orbiting ionized and molecular gas. We present high resolution radio continuum images of the central 3 and report a faint continuous linear structure centered on Sgr A* with a PA~60 degrees. The extension of this feature appears to be terminated symmetrically by two linearly polarized structures at 8.4 GHz, ~75 from Sgr A*. A number of weak blobs of radio emission with X-ray counterparts are detected along the axis of the linear structure. The linear structure is best characterized by a mildly relativistic jet from Sgr A* with an outflow rate 10^-6 solar mass per year. The near and far-sides of the jet are interacting with orbiting ionized and molecular gas over the last 1-3 hundred years and are responsible for a 2 hole, the minicavity, characterized by disturbed kinematics, enhanced FeII/III line emission, and diffuse X-ray gas. The estimated kinetic luminosity of the outflow is ~1.2x10^{41} erg/s, so the interaction with the bar may be responsible for the Galactic center X-ray flash inferred to be responsible for much of the fluorescent Fe Kalpha line emission from the inner 100pc of the Galaxy.
Our aim is to characterize the polarized continuum emission properties including intensity, polarization position angle, and polarization percentage of Sgr A* at $sim$100 (3.0 mm), $sim$230 (1.3 mm), $sim$345 (0.87 mm), $sim$500 (0.6 mm), and $sim$700 GHz (0.43 mm). We report continuum emission properties of Sgr A* at the above frequency bands, based on the Atacama Large Millimeter Array (ALMA) observations. We measured flux densities of Sgr A* from ALMA single pointing and mosaic observations. We performed sinusoidal fittings to the observed (XX-YY)/I intensity ratios, to derive the polarization position angles and polarization percentages. We successfully detect polarized continuum emission from all observed frequency bands. We observed lower Stokes I intensity at $sim$700 GHz than that at $sim$500 GHz, which suggests that emission at $gtrsim$500 GHz is from optically thin part of a synchrotron emission spectrum. Both the Stokes I intensity and the polarization position angle at our highest observing frequency of $sim$700 GHz, may be varying with time. However, we do not yet detect variation in the polarization percentage at $>$500 GHz. The polarization percentage at $sim$700 GHz is likely lower than that at $sim$500 GHz. By comparing the $sim$500 GHz and $sim$700 GHz observations with the observations at lower frequency bands, we suggest that the intrinsic polarization position angle of Sgr A* is varying with time. This paper also reports the measurable polarization properties from the observed calibration quasars. The future simultaneous multi-frequency polarization observations are required for clarifying the time and frequency variation of polarization position angle and polarization percentage.
We present a formalism for continuum and line emission from random clumpy media together with its application to problems of current interest, including CO spectral lines from ensembles of clouds and radio emission from HII regions, supernovae and star-forming regions. For line emission we find that the effects of clump opacity on observed line ratios can be indistinguishable from variations of intrinsic line strengths, adding to the difficulties in determining abundances from line observations. Our formalism is applicable to arbitrary distributions of cloud properties, provided the cloud volume filling factor is small; numerical simulations show it to hold up to filling factors of about 10%. We show that irrespective of the complexity of the cloud ensemble, the radiative effect of clumpiness can be parametrized at each frequency by a single multiplicative correction to the overall optical depth; this multiplier is derived from appropriate averaging over individual cloud properties. Our main finding is that cloud shapes have only a negligible effect on radiation propagation in clumpy media; the results of calculations employing point-like clouds are practically indistinguishable from those for finite-size clouds with arbitrary geometrical shapes.
We analyze the two brightest Chandra X-ray flares detected from Sagittarius A*, with peak luminosities more than 600 x and 245 x greater than the quiescent X-ray emission. The brightest flare has a distinctive double-peaked morphology --- it lasts 5.7 ksec ($sim 2$ hours), with a rapid rise time of 1500 sec and a decay time of 2500 sec. The second flare lasts 3.4 ksec, with rise and decay times of 1700 sec and 1400 sec. These luminous flares are significantly harder than quiescence: the first has a power law spectral index $Gamma = 2.06pm 0.14$ and the second has $Gamma = 2.03pm 0.27$, compared to $Gamma = 3.0pm0.2$ for the quiescent accretion flow. These spectral indices (as well as the flare hardness ratios) are consistent with previously-detected Sgr A* flares, suggesting that bright and faint flares arise from similar physical processes. Leveraging the brightest flares long duration and high signal-to-noise, we search for intraflare variability and detect excess X-ray power at a frequency of $ u approx 3$ mHz, but show that it is an instrumental artifact and not of astrophysical origin. We find no other evidence (at the 95% confidence level) for periodic or quasi-periodic variability in either flares time series. We also search for non-periodic excess power but do not find compelling evidence in the power spectrum. Bright flares like these remain our most promising avenue for identifying Sgr A*s short timescale variability in the X-ray, which may probe the characteristic size scale for the X-ray emission region.
Daily X-ray flaring represents an enigmatic phenomenon of Sgr A$^{star}$ --- the supermassive black hole at the center of our Galaxy. We report initial results from a systematic X-ray study of this phenomenon, based on extensive {it Chandra} observations obtained from 1999 to 2012, totaling about 4.5 Ms. We detect flares, using a combination of the maximum likelihood and Markov Chain Monte Carlo methods, which allow for a direct accounting for the pile-up effect in the modeling of the flare lightcurves and an optimal use of the data, as well as the measurements of flare parameters, including their uncertainties. A total of 82 flares are detected. About one third of them are relatively faint, which were not detected previously. The observation-to-observation variation of the quiescent emission has an average root-mean-square of $6%-14%$, including the Poisson statistical fluctuation of faint flares below our detection limits. We find no significant long-term variation in the quiescent emission and the flare rate over the 14 years. In particular, we see no evidence of changing quiescent emission and flare rate around the pericenter passage of the S2 star around 2002. We show clear evidence of a short-term clustering for the ACIS-S/HETG 0th-order flares on time scale of $20-70$ ks. We further conduct detailed simulations to characterize the detection incompleteness and bias, which is critical to a comprehensive follow-up statistical analysis of flare properties. These studies together will help to establish Sgr A$^{star}$ as a unique laboratory to understand the astrophysics of prevailing low-luminosity black holes in the Universe.