Do you want to publish a course? Click here

Zero-Shot Multi-View Indoor Localization via Graph Location Networks

79   0   0.0 ( 0 )
 Added by Meng-Jiun Chiou
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Indoor localization is a fundamental problem in location-based applications. Current approaches to this problem typically rely on Radio Frequency technology, which requires not only supporting infrastructures but human efforts to measure and calibrate the signal. Moreover, data collection for all locations is indispensable in existing methods, which in turn hinders their large-scale deployment. In this paper, we propose a novel neural network based architecture Graph Location Networks (GLN) to perform infrastructure-free, multi-view image based indoor localization. GLN makes location predictions based on robust location representations extracted from images through message-passing networks. Furthermore, we introduce a novel zero-shot indoor localization setting and tackle it by extending the proposed GLN to a dedicated zero-shot version, which exploits a novel mechanism Map2Vec to train location-aware embeddings and make predictions on novel unseen locations. Our extensive experiments show that the proposed approach outperforms state-of-the-art methods in the standard setting, and achieves promising accuracy even in the zero-shot setting where data for half of the locations are not available. The source code and datasets are publicly available at https://github.com/coldmanck/zero-shot-indoor-localization-release.



rate research

Read More

This work proposes a novel attentive graph neural network (AGNN) for zero-shot video object segmentation (ZVOS). The suggested AGNN recasts this task as a process of iterative information fusion over video graphs. Specifically, AGNN builds a fully connected graph to efficiently represent frames as nodes, and relations between arbitrary frame pairs as edges. The underlying pair-wise relations are described by a differentiable attention mechanism. Through parametric message passing, AGNN is able to efficiently capture and mine much richer and higher-order relations between video frames, thus enabling a more complete understanding of video content and more accurate foreground estimation. Experimental results on three video segmentation datasets show that AGNN sets a new state-of-the-art in each case. To further demonstrate the generalizability of our framework, we extend AGNN to an additional task: image object co-segmentation (IOCS). We perform experiments on two famous IOCS datasets and observe again the superiority of our AGNN model. The extensive experiments verify that AGNN is able to learn the underlying semantic/appearance relationships among video frames or related images, and discover the common objects.
Zero-shot learning extends the conventional object classification to the unseen class recognition by introducing semantic representations of classes. Existing approaches predominantly focus on learning the proper mapping function for visual-semantic embedding, while neglecting the effect of learning discriminative visual features. In this paper, we study the significance of the discriminative region localization. We propose a semantic-guided multi-attention localization model, which automatically discovers the most discriminative parts of objects for zero-shot learning without any human annotations. Our model jointly learns cooperative global and local features from the whole object as well as the detected parts to categorize objects based on semantic descriptions. Moreover, with the joint supervision of embedding softmax loss and class-center triplet loss, the model is encouraged to learn features with high inter-class dispersion and intra-class compactness. Through comprehensive experiments on three widely used zero-shot learning benchmarks, we show the efficacy of the multi-attention localization and our proposed approach improves the state-of-the-art results by a considerable margin.
The goal of zero-shot learning (ZSL) is to train a model to classify samples of classes that were not seen during training. To address this challenging task, most ZSL methods relate unseen test classes to seen(training) classes via a pre-defined set of attributes that can describe all classes in the same semantic space, so the knowledge learned on the training classes can be adapted to unseen classes. In this paper, we aim to optimize the attribute space for ZSL by training a propagation mechanism to refine the semantic attributes of each class based on its neighbors and related classes on a graph of classes. We show that the propagated attributes can produce classifiers for zero-shot classes with significantly improved performance in different ZSL settings. The graph of classes is usually free or very cheap to acquire such as WordNet or ImageNet classes. When the graph is not provided, given pre-defined semantic embeddings of the classes, we can learn a mechanism to generate the graph in an end-to-end manner along with the propagation mechanism. However, this graph-aided technique has not been well-explored in the literature. In this paper, we introduce the attribute propagation network (APNet), which is composed of 1) a graph propagation model generating attribute vector for each class and 2) a parameterized nearest neighbor (NN) classifier categorizing an image to the class with the nearest attribute vector to the images embedding. For better generalization over unseen classes, different from previous methods, we adopt a meta-learning strategy to train the propagation mechanism and the similarity metric for the NN classifier on multiple sub-graphs, each associated with a classification task over a subset of training classes. In experiments with two zero-shot learning settings and five benchmark datasets, APNet achieves either compelling performance or new state-of-the-art results.
With the development of presentation attacks, Automated Fingerprint Recognition Systems(AFRSs) are vulnerable to presentation attack. Thus, numerous methods of presentation attack detection(PAD) have been proposed to ensure the normal utilization of AFRS. However, the demand of large-scale presentation attack images and the low-level generalization ability always astrict existing PAD methods actual performances. Therefore, we propose a novel Zero-Shot Presentation Attack Detection Model to guarantee the generalization of the PAD model. The proposed ZSPAD-Model based on generative model does not utilize any negative samples in the process of establishment, which ensures the robustness for various types or materials based presentation attack. Different from other auto-encoder based model, the Fine-grained Map architecture is proposed to refine the reconstruction error of the auto-encoder networks and a task-specific gaussian model is utilized to improve the quality of clustering. Meanwhile, in order to improve the performance of the proposed model, 9 confidence scores are discussed in this article. Experimental results showed that the ZSPAD-Model is the state of the art for ZSPAD, and the MS-Score is the best confidence score. Compared with existing methods, the proposed ZSPAD-Model performs better than the feature-based method and under the multi-shot setting, the proposed method overperforms the learning based method with little training data. When large training data is available, their results are similar.
In this paper, we present a novel Motion-Attentive Transition Network (MATNet) for zero-shot video object segmentation, which provides a new way of leveraging motion information to reinforce spatio-temporal object representation. An asymmetric attention block, called Motion-Attentive Transition (MAT), is designed within a two-stream encoder, which transforms appearance features into motion-attentive representations at each convolutional stage. In this way, the encoder becomes deeply interleaved, allowing for closely hierarchical interactions between object motion and appearance. This is superior to the typical two-stream architecture, which treats motion and appearance separately in each stream and often suffers from overfitting to appearance information. Additionally, a bridge network is proposed to obtain a compact, discriminative and scale-sensitive representation for multi-level encoder features, which is further fed into a decoder to achieve segmentation results. Extensive experiments on three challenging public benchmarks (i.e. DAVIS-16, FBMS and Youtube-Objects) show that our model achieves compelling performance against the state-of-the-arts.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا