No Arabic abstract
We investigate the regularizing effect of certain additive continuous perturbations on SDEs with multiplicative fractional Brownian motion (fBm). Traditionally, a Lipschitz requirement on the drift and diffusion coefficients is imposed to ensure existence and uniqueness of the SDE. We show that suitable perturbations restore existence, uniqueness and regularity of the flow for the resulting equation, even when both the drift and the diffusion coefficients are distributional, thus extending the program of regularization by noise to the case of multiplicative SDEs. Our method relies on a combination of the non-linear Young formalism developed by Catellier and Gubinelli, and stochastic averaging estimates recently obtained by Hairer and Li.
We study distribution dependent stochastic differential equation driven by a continuous process, without any specification on its law, following the approach initiated in [16]. We provide several criteria for existence and uniqueness of solutions which go beyond the classical globally Lipschitz setting. In particular we show well-posedness of the equation, as well as almost sure convergence of the associated particle system, for drifts satisfying either Osgood-continuity, monotonicity, local Lipschitz or Sobolev differentiability type assumptions.
Existence and uniqueness of solutions to the stochastic heat equation with multiplicative spatial noise is studied. In the spirit of pathwise regularization by noise, we show that a perturbation by a sufficiently irregular continuous path establish wellposedness of such equations, even when the drift and diffusion coefficients are given as generalized functions or distributions. In addition we prove regularity of the averaged field associated to a Levy fractional stable motion, and use this as an example of a perturbation regularizing the multiplicative stochastic heat equation.
The Harnack and log Harnack inequalities for stochastic differential equation driven by $G$-Brownian motion with multiplicative noise are derived by means of coupling by change of mesure. All of the above results extend the existing ones in the linear expectation setting. Moreover, the gradient estimate generalize the nonlinear results appeared in [11].
We study ODEs with vector fields given by general Schwartz distributions, and we show that if we perturb such an equation by adding an infinitely regularizing path, then it has a unique solution and it induces an infinitely smooth flow of diffeomorphisms. We also introduce a criterion under which the sample paths of a Gaussian process are infinitely regularizing, and we present two processes which satisfy our criterion. The results are based on the path-wise space-time regularity properties of local times, and solutions are constructed using the approach of Catellier-Gubinelli based on non-linear Young integrals.
In this paper we study the asymptotic properties of the power variations of stochastic processes of the type X=Y+L, where L is an alpha-stable Levy process, and Y a perturbation which satisfies some mild Lipschitz continuity assumptions. We establish local functional limit theorems for the power variation processes of X. In case X is a solution of a stochastic differential equation driven by L, these limit theorems provide estimators of the stability index alpha. They are applicable for instance to model fitting problems for paleo-climatic temperature time series taken from the Greenland ice core.