Do you want to publish a course? Click here

Tensor non-Gaussianity in chiral scalar-tensor theories of gravity

121   0   0.0 ( 0 )
 Added by Luca Caloni
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Violation of parity symmetry in the gravitational sector, which manifests into unequal left and right circular polarization states of primordial gravitational waves, represents a way to test high-energy modifications to general relativity. In this paper we study inflation within recently proposed chiral scalar-tensor theories of gravity, that extend Chern-Simons gravity by including parity-violating operators containing first and second derivatives of the non-minimally coupled scalar (inflaton) field. Given the degeneracy between different parity-violating theories at the level of the power spectrum statistics, we make a detailed analysis of the parity violation on primordial tensor non-Gaussianity. We show, with an explicit computation, that no new contributions arise in the graviton bispectra if the couplings in the new operators are constant in a pure de Sitter phase. On the other hand, if the coupling functions are time-dependent during inflation, the tensor bispectra acquire non-vanishing contributions from the parity-breaking operators even in the exact de Sitter limit, with maximal signal in the squeezed and equilateral configurations. We also comment on the consistency relation of the three-point function of tensor modes in this class of models and discuss prospects of detecting parity-breaking signatures through Cosmic Microwave Background $B$-mode bispectra.



rate research

Read More

We present measurements of the spatial clustering statistics in redshift space of various scalar field modified gravity simulations. We utilise the two-point and the three-point correlation functions to quantify the spatial distribution of dark matter halos within these simulations and thus discern between the models. We compare $Lambda$CDM simulations to various modified gravity scenarios and find consistency with previous work in terms of 2-point statistics in real and redshift-space. However using higher order statistics such as the three-point correlation function in redshift space we find significant deviations from $Lambda$CDM hinting that higher order statistics may prove to be a useful tool in the hunt for deviations from General Relativity.
73 - Valerio Faraoni 2021
Previously, the Einstein equation has been described as an equation of state, general relativity as the equilibrium state of gravity, and $f({cal R})$ gravity as a non-equilibrium one. We apply Eckarts first order thermodynamics to the effective dissipative fluid describing scalar-tensor gravity. Surprisingly, we obtain simple expressions for the effective heat flux, temperature of gravity, shear and bulk viscosity, and entropy density, plus a generalized Fourier law in a consistent Eckart thermodynamical picture. Well-defined notions of temperature and approach to equilibrium, missing in the current thermodynamics of spacetime scenarios, naturally emerge.
69 - Luis Aviles , Hideki Maeda , 2019
We analyze junction conditions at a null or non-null hypersurface $Sigma$ in a large class of scalar-tensor theories in arbitrary $n(ge 3)$ dimensions. After showing that the metric and a scalar field must be continuous at $Sigma$ as the first junction conditions, we derive the second junctions conditions from the Einstein equations and the equation of motion for the scalar field. Subsequently, we study $C^1$ regular matching conditions as well as vacuum conditions at $Sigma$ both in the Jordan and Einstein frames. Our result suggests that the following configurations may be possible; (i) a vacuum thin-shell at null $Sigma$ in the Einstein frame, (ii) a vacuum thin-shell at null and non-null $Sigma$ in the Jordan frame, and (iii) a non-vacuum $C^1$ regular matching at null $Sigma$ in the Jordan frame. Lastly, we clarify the relations between the conditions for $C^1$ regularity and also for vacuum $Sigma$ in the Jordan and Einstein frames.
A class of scalar-tensor theories (STT) including a non-metricity that unifies metric, Palatini and hybrid metric-Palatini gravitational actions with non-minimal interaction is proposed and investigated from the point of view of their consistency with generalized conformal transformations. It is shown that every such theory can be represented on-shell by a purely metric STT possessing the same solutions for a metric and a scalar field. A set of generalized invariants is also proposed. This extends the formalism previously introduced in cite{kozak2019}. We then apply the formalism to Starobinsky model, write down the Friedmann equations for three possible cases: metric, Palatini and hybrid metric-Palatini, and compare some inflationary observables.
124 - Ismael Ayuso 2014
We compute the spectrum of scalar models with a general coupling to the scalar curvature. We find that the perturbative states of these theories are given by two massive spin-0 modes in addition to one massless spin-2 state. This latter mode can be identified with the standard graviton field. Indeed, we are able to define an Einstein frame, where the dynamics of the massless spin-2 graviton is the one associated with the Einstein-Hilbert action. We also explore the interactions of all these degrees of freedom in the mentioned frame, since part of the coupling structure can be anticipated by geometrical arguments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا