Do you want to publish a course? Click here

Magnetism and anomalous transport in the Weyl semimetal PrAlGe: Possible route to axial gauge fields

155   0   0.0 ( 0 )
 Added by Jonathan White
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In magnetic Weyl semimetals, where magnetism breaks time-reversal symmetry, large magnetically sensitive anomalous transport responses are anticipated that could be useful for topological spintronics. The identification of new magnetic Weyl semimetals is therefore in high demand, particularly since in these systems Weyl node configurations may be easily modified using magnetic fields. Here we explore experimentally the magnetic semimetal PrAlGe, and unveil a direct correspondence between easy-axis Pr ferromagnetism and anomalous Hall and Nernst effects. With sizes of both the anomalous Hall conductivity and Nernst effect in good quantitative agreement with first principles calculations, we identify PrAlGe as a system where magnetic fields can connect directly to Weyl nodes via the Pr magnetization. Furthermore, we find the predominantly easy-axis ferromagnetic ground state co-exists with a low density of nanoscale textured magnetic domain walls. We describe how such nanoscale magnetic textures could serve as a local platform for tunable axial gauge fields of Weyl fermions.



rate research

Read More

CeAlGe, a proposed type-II Weyl semimetal, orders antiferromagnetically below 5 K. Both a spin-flop and a spin-flip transitions to less than 1 $mu_B$/Ce are observed at 2 K below 30 kOe in the $M(H)$ ($bf{H}|bf{a}$ and $bf{b}$) and 4.3 kOe ($bf{H}|langle110rangle$) data, respectively, indicating a four-fold symmetry of the $M(H)$ along the principal directions in the tetragonal $it{ab}$-plane with $langle110rangle$ set of easy directions. However, anomalously robust and complex two-fold symmetry is observed in the angular dependence of resistivity and magnetic torque data in the magnetically ordered state once the field is swept in the $it{ab}$-plane. This two-fold symmetry is independent of temperature- and field-hystereses and suggests a magnetic phase transition that separates two different magnetic structures in the $it{ab}$-plane. The boundary of this magnetic phase transition can be tuned by different growth conditions.
We show that three-dimensional trace anomalies lead to new universal anomalous transport effects on a conformally-flat spacetime with background scalar fields. In contrast to conventional anomalous transports in quantum chromodynamics (QCD) or quantum electrodynamics (QED), our current is independent of background gauge fields. Therefore, our anomalous transport survives even in the absence of vector-like external sources. By manipulating background fields, we suggest a setup to detect our anomalous transport. If one turns on scalar couplings in a finite interval and considers a conformal factor depending just on (conformal) time, we find anomalous transport localized at the interfaces of the interval flows perpendicularly to the interval. The magnitude of the currents is the same on the two interfaces but with opposite directions. Without the assumption on scalar couplings, and only assuming the conformal factor depending solely on (conformal) time as usually done in cosmology, one also finds the three-dimensional Hubble parameter naturally appears in our current.
Recent reports of a large anomalous Hall effect (AHE) in ferromagnetic Weyl semimetals (FM WSM) have led to a resurgence of interest in this enigmatic phenomenon. However, due to a lack of tunable materials, the interplay between the intrinsic mechanism caused by Berry curvature and extrinsic mechanisms due to scattering remains unclear in FM WSMs. In this contribution, we present a thorough investigation of both the extrinsic and intrinsic AHE in a new family of FM WSMs, PrAlGe$_{1-x}$Si$_x$, where $x$ can be tuned continuously. From DFT calculations, we show that the two end members, PrAlGe and PrAlSi, have different Fermi surfaces but similar Weyl node structures. Experimentally, we observe moderate changes in the anomalous Hall coefficient ($R_S$) but significant changes in the ordinary Hall coefficient ($R_0$) in PrAlGe$_{1-x}$Si$_x$ as a function of $x$, confirming a change of Fermi surface. By comparing the magnitude of $R_0$ and $R_S$, we identify two regimes; $|R_0|<|R_S|$ when $xle0.5$ and $|R_0|>|R_S|$ when $x>0.5$. Through a detailed scaling analysis, we discover a universal anomalous Hall conductivity (AHC) from intrinsic contribution when $xle0.5$. Such universal AHC is absent when $x>0.5$. Thus, we point out the significance of the extrinsic mechanisms in FM WSMs and report the first observation of a transition from intrinsic to extrinsic AHE in PrAlGe$_{1-x}$Si$_x$.
Weyl semimetals are materials where electrons behave effectively as a kind of massless relativistic particles known asWeyl fermions. These particles occur in two flavours, or chiralities, and are subject to quantum anomalies, the breaking of a conservation law by quantum fluctuations. For instance, the number of Weyl fermions of each chirality is not independently conserved in parallel electric and magnetic field, a phenomenon known as the chiral anomaly. In addition, an underlying curved spacetime provides a distinct contribution to a chiral imbalance, an effect known as the mixed axial-gravitational anomaly, which remains experimentally elusive. However, the presence of a mixed gauge-gravitational anomaly has recently been tied to thermoelectrical transport in a magnetic field, even in flat spacetime, opening the door to experimentally probe such type of anomalies in Weyl semimetals. Using a temperature gradient, we experimentally observe a positive longitudinal magnetothermoelectric conductance (PMTC) in the Weyl semimetal NbP for collinear temperature gradients and magnetic fields (DT || B) that vanishes in the ultra quantum limit. This observation is consistent with the presence of a mixed axial-gravitational anomaly. Our work provides clear experimental evidence for the existence of a mixed axial-gravitational anomaly of Weyl fermions, an outstanding theoretical concept that has so far eluded experimental detection.
486 - Ki-Seok Kim , Heon-Jung Kim , 2014
Weyl metal is regarded as a platform toward interacting topological states of matter, where its topological structure gives rise to anomalous transport phenomena, referred to as chiral magnetic effect and negative magneto-resistivity, the origin of which is chiral anomaly. Recently, the negative magneto-resistivity has been observed with the signature of weak anti-localization at $x = 3 sim 4 ~ %$ in Bi$_{1-x}$Sb$_{x}$, where magnetic field is applied in parallel with electric field. Based on the Boltzmann-equation approach, we find the negative magneto-resistivity in the presence of weak anti-localization. An essential ingredient is to introduce the topological structure of chiral anomaly into the Boltzmann-equation approach, resorting to semi-classical equations of motion with Berry curvature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا