Do you want to publish a course? Click here

Hexagonal Transverse Coupled Cavity VCSEL Redefining the High-Speed Lasers

92   0   0.0 ( 0 )
 Added by Hamed Dalir
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The vertical-cavity surface-emitting lasers (VCSELs) have emerged as a vital approach for realizing energy efficient, high speed optical interconnects in the data center and supercomputers. As of today, VCSEL is the most suitable for mass production in terms of cost-effectiveness and reliability. However, there are still key challenges for higher speed modulation above 40 GHz. Here, a hexagonal transverse coupled cavity VCSEL adiabatically coupled through the center cavity is proposed. A 3-dB roll-off modulation bandwidth of 45 GHz is demonstrated, which is five times greater than a conventional VCSEL fabricated on the same epi-wafer structure. While a parity time (PT) symmetry approaches add loss to engineer the topological state of the laser system, here, a radical paradigm shift with gain introduces symmetry breaking. This idea, then enables a single mode operation with a side-mode suppression-ratio (SMSR) of > 30 decibels and signal-to-noise ratio (SNR) of > 45 decibels. The energy distribution inside the coupled cavity system is also redistributed to provide a coherent gain in a spatially separated system. Consequently, throughput power is three times higher than that of the conventional VCSEL.



rate research

Read More

Enhancing the modulation bandwidth (MBW) of semiconductor lasers has been the challenge of research and technology to meet the need of high-speed photonic applications. In this paper, we propose the design of vertical-cavity surface-emitting laser integrated with multiple transverse coupled cavities (MTCCs) as a promising device with ultra-high 3-dB bandwidth. The laser features high modulation performance because of the accumulated strong coupling of the slow-light feedback from the surrounding lateral TCCs into the VCSEL cavity. Photon-photon resonance (PPR) is predicted to occur at ultra-high frequencies exceeding 145 GHz due to the optical feedback from short TCCs, which achieves 3-dB MBW reaching 170 GHz. The study is based on the modeling of the VCSEL dynamics under multiple transverse slow-light feedback from the surrounding TCCs. We show that the integration of the VCSEL with four or six feedback cavities is advantageous over the TCC-VCSEL in achieving much higher MBW enhancement under weaker coupling of slow-light into the VCSEL cavity. We also characterize the noise properties of the promising MTCC-VCSEL in the regime of ultra-high bandwidth in terms of the Fourier spectrum of the relative intensity noise (RIN).
Integration of solid state quantum emitters into nanophotonic circuits is a critical step towards fully on-chip quantum photonic based technologies. Among potential materials platforms, quantum emitters in hexagonal boron nitride have emerged over the last years as viable candidate. While the fundamental physical properties have been intensively studied over the last years, only few works have focused on the emitter integration into photonic resonators. Yet, for a potential quantum photonic material platform, the integration with nanophotonic cavities is an important cornerstone, as it enables the deliberate tuning of the spontaneous emission and the improved readout of distinct transitions for that quantum emitter. In this work, we demonstrate the resonant tuning of an integrated monolithic hBN quantum emitter in a photonic crystal cavity through gas condensation at cryogenic temperature. We resonantly coupled the zero phonon line of the emitter to a cavity mode and demonstrate emission enhancement and lifetime reduction, with an estimation for the Purcell factor of ~ 15.
High-power lasers have numerous scientific and industrial applications. Some key areas include laser cutting and welding in manufacturing, directed energy in fusion reactors or defense applications, laser surgery in medicine, and advanced photolithography in the semiconductor industry. These applications require optical components, in particular mirrors, that withstand high optical powers for directing light from the laser to the target. Ordinarily, mirrors are comprised of multilayer coatings of different refractive index and thickness. At high powers, imperfections in these layers lead to absorption of light, resulting in thermal stress and permanent damage to the mirror. Here we design, simulate, fabricate, and demonstrate monolithic and highly reflective dielectric mirrors which operate under high laser powers without damage. The mirrors are realized by etching nanostructures into the surface of single-crystal diamond, a material with exceptional optical and thermal properties. We measure reflectivities of greater than 98% and demonstrate damage-free operation using 10 kW of continuous-wave laser light at 1070 nm, with intensities up to 4.6 MW/cm2. In contrast, at these laser powers, we observe damage to a standard dielectric mirror based on optical coatings. Our results initiate a new category of broadband optics that operate in extreme conditions.
157 - Chao Xiang , Joel Guo , Warren Jin 2021
Silicon nitride (SiN) waveguides with ultra-low optical loss enable integrated photonic applications including low noise, narrow linewidth lasers, chip-scale nonlinear photonics, and microwave photonics. Lasers are key components to SiN photonic integrated circuits (PICs), but are difficult to fully integrate with low-index SiN waveguides due to their large mismatch with the high-index III-V gain materials. The recent demonstration of multilayer heterogeneous integration provides a practical solution and enabled the first-generation of lasers fully integrated with SiN waveguides. However a laser with high device yield and high output power at telecommunication wavelengths, where photonics applications are clustered, is still missing, hindered by large mode transition loss, nonoptimized cavity design, and a complicated fabrication process. Here, we report high-performance lasers on SiN with tens of milliwatts output through the SiN waveguide and sub-kHz fundamental linewidth, addressing all of the aforementioned issues. We also show Hertz-level linewidth lasers are achievable with the developed integration techniques. These lasers, together with high-$Q$ SiN resonators, mark a milestone towards a fully-integrated low-noise silicon nitride photonics platform. This laser should find potential applications in LIDAR, microwave photonics and coherent optical communications.
Hexagonal boron nitride (hBN) is a wide bandgap van der Waals material that is emerging as a powerful platform for quantum optics and nanophotonics. In this work, we demonstrate whispering gallery mode silica microresonators hybridized with thin layers of epitaxially grown hBN that exhibit high optical quality factor $> 7 times 10^5$. Measurements of the effect of hBN thickness on optical $Q$ and comparison with a theoretical model allows the linear optical absorption coefficient of the hBN films to be estimated. These high-$Q$ devices will be useful for applications in quantum and nonlinear optics, and their hybridized geometry provides a sensitive platform for evaluating losses in hBN and other 2D materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا