No Arabic abstract
Magnetic skyrmions in 2D chiral magnets are in general stabilized by a combination of Dzyaloshinskii-Moriya interaction and external magnetic field. Here, we show that skyrmions can also be stabilized in twisted moire superlattices in the absence of an external magnetic field. Our setup consists of a 2D ferromagnetic layer twisted on top of an antiferromagnetic substrate. The coupling between the ferromagnetic layer and the substrate generates an effective alternating exchange field. We find a large region of skyrmion crystal phase when the length scales of the moire periodicity and skyrmions are compatible. Unlike chiral magnets under magnetic field, skyrmions in moire superlattices show enhanced stability for the easy-axis (Ising) anisotropy which can be essential to realize skyrmions since most van der Waals magnets possess easy-axis anisotropy.
The van der Waals magnets provide an ideal platform to explore quantum magnetism both theoretically and experimentally. We study a classical J1-J2 model with distinct magnetic degrees of freedom on a honeycomb lattice that can be realized in some van der Waals magnets. We find that the model develops a spiral spin liquid (SSL), a massively degenerated state with spiral contours in the reciprocal space, not only for continuous spin vectors, XY and Heisenberg spins but also for Ising spin moments. Surprisingly, the SSL is more robust for the Ising case, and the shape of the spiral contours is pinned to an emergent kagome structure at the low temperatures for different J2. The spin-chirality order for the continuous spins at the finite temperatures is further connected to the electric polarization via the inverse Dzyaloshinski-Moriya mechanism. These results provide a guidance for the experimental realization of 2D SSLs, and the SSL can further be used as the mother state to generate skyrmions that are promising candidates for future memory devices.
Driving a two-dimensional Mott insulator with circularly polarized light breaks time-reversal and inversion symmetry, which induces an optically-tunable synthetic scalar spin chirality interaction in the effective low-energy spin Hamiltonian. Here, we show that this mechanism can stabilize topological magnon excitations in honeycomb ferromagnets and in optical lattices. We find that the irradiated quantum magnet is described by a Haldane model for magnons that hosts topologically-protected edge modes. We study the evolution of the magnon spectrum in the Floquet regime and via time propagation of the magnon Hamiltonian for a slowly varying pulse envelope. Compared to similar but conceptually distinct driving schemes based on the Aharanov-Casher effect, the dimensionless light-matter coupling parameter $lambda = eEa/hbaromega$ at fixed electric field strength is enhanced by a factor $sim 10^5$. This increase of the coupling parameter allows to induce a topological gap of the order of $Delta approx 2$ meV with realistic laser pulses, bringing an experimental realization of light-induced topological magnon edge states within reach.
The atomic-level vdW heterostructures have been one of the most interesting quantum material systems, due to their exotic physical properties. The interlayer coupling in these systems plays a critical role to realize novel physical observation and enrich interface functionality. However, there is still lack of investigation on the tuning of interlayer coupling in a quantitative way. A prospective strategy to tune the interlayer coupling is to change the electronic structure and interlayer distance by high pressure, which is a well-established method to tune the physical properties. Here, we construct a high-quality WS2/MoSe2 heterostructure in a DAC and successfully tuned the interlayer coupling through hydrostatic pressure. Typical photoluminescence spectra of the monolayer MoSe2 (ML-MoSe2), monolayer WS2 (ML-WS2) and WS2/MoSe2 heterostructure have been observed and its intriguing that their photoluminescence peaks shift with respect to applied pressure in a quite different way. The intralayer exciton of ML-MoSe2 and ML-WS2 show blue shift under high pressure with a coefficient of 19.8 meV/GPa and 9.3 meV/GPa, respectively, while their interlayer exciton shows relative weak pressure dependence with a coefficient of 3.4 meV/GPa. Meanwhile, external pressure helps to drive stronger interlayer interaction and results in a higher ratio of interlayer/intralayer exciton intensity, indicating the enhanced interlayer exciton behavior. The first-principles calculation reveals the stronger interlayer interaction which leads to enhanced interlayer exciton behavior in WS2/MoSe2 heterostructure under external pressure and reveals the robust peak of interlayer exciton. This work provides an effective strategy to study the interlayer interaction in vdW heterostructures, which could be of great importance for the material and device design in various similar quantum systems.
In inhomogeneous dielectric media the divergence of the electromagnetic stress is related to the gradients of varepsilon and mu, which is a consequence of Maxwells equations. Investigating spherically symmetric media we show that this seemingly universal relationship is violated for electromagnetic vacuum forces such as the generalized van der Waals and Casimir forces. The stress needs to acquire an additional anomalous pressure. The anomaly is a result of renormalization, the need to subtract infinities in the stress for getting a finite, physical force. The anomalous pressure appears in the stress in media like dark energy appears in the energy-momentum tensor in general relativity. We propose and analyse an experiment to probe the van der Waals anomaly with ultracold atoms. The experiment may not only test an unusual phenomenon of quantum forces, but also an analogue of dark energy, shedding light where nothing is known empirically.
The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, the family of van der Waals materials that can be exfoliated to isolate 2D materials keeps growing, but most of them are synthetic. Interestingly, in nature plenty of naturally occurring van der Waals minerals can be found with a wide range of chemical compositions and crystal structures whose properties are mostly unexplored so far. This Perspective aims to provide an overview of different families of van der Waals minerals to stimulate their exploration in the 2D limit.