Using the notion of thermodynamic length, the first law of thermodynamics is consistently derived for two binary configurations of equal Kerr-Newman black holes separated by a massless strut. Like in the electrostatic systems of two Reissner-Nordstrom black holes and stationary vacuum systems of two Kerr black holes considered earlier, the thermodynamic length $ell$ turns out to be defined by the same simple formula $ell=Lexp(gamma_0)$, $L$ being the coordinate length of the strut and $gamma_0$ the value of the metric function $gamma$ on the strut, which permits the elaboration of $ell$ in a concise analytic form. The expression of the free energy in the case of two generic Kerr-Newman black holes is also proposed.