We propose a novel probe of fundamental physics that involves the exploration of temporal correlations between the multi-frequency electromagnetic (EM) signal and the sub-threshold GW signal or stochastic gravitational wave background (SGWB) originating from coalescing binaries. This method will be useful for the detection of EM counterparts associated with the sub-threshold/SGWB signal. Exploiting the time delay between concomitant emission of the gravitational wave and EM signals enables inference of the redshifts of the contributing sources by studying the time delay dilation due to cosmological expansion, provided that the time-lag between the emission of gravitational wave signal and the EM signal acts like a standard clock. Measurement of the inevitable time-domain correlations between different frequencies of gravitational and EM waves, most notably in gamma-rays, will test several aspects of fundamental physics and gravitation theory, and enable a new pathway for current and future gravitational wave telescopes to study the universal nature of binary compact objects to high redshifts.