No Arabic abstract
Scene text spotting aims to detect and recognize the entire word or sentence with multiple characters in natural images. It is still challenging because ambiguity often occurs when the spacing between characters is large or the characters are evenly spread in multiple rows and columns, making many visually plausible groupings of the characters (e.g. BERLIN is incorrectly detected as BERL and IN in Fig. 1(c)). Unlike previous works that merely employed visual features for text detection, this work proposes a novel text spotter, named Ambiguity Eliminating Text Spotter (AE TextSpotter), which learns both visual and linguistic features to significantly reduce ambiguity in text detection. The proposed AE TextSpotter has three important benefits. 1) The linguistic representation is learned together with the visual representation in a framework. To our knowledge, it is the first time to improve text detection by using a language model. 2) A carefully designed language module is utilized to reduce the detection confidence of incorrect text lines, making them easily pruned in the detection stage. 3) Extensive experiments show that AE TextSpotter outperforms other state-of-the-art methods by a large margin. For example, we carefully select a validation set of extremely ambiguous samples from the IC19-ReCTS dataset, where our approach surpasses other methods by more than 4%. The code has been released at https://github.com/whai362/AE_TextSpotter. The image list and evaluation scripts of the validation set have been released at https://github.com/whai362/TDA-ReCTS.
Recent end-to-end trainable methods for scene text spotting, integrating detection and recognition, showed much progress. However, most of the current arbitrary-shape scene text spotters use region proposal networks (RPN) to produce proposals. RPN relies heavily on manually designed anchors and its proposals are represented with axis-aligned rectangles. The former presents difficulties in handling text instances of extreme aspect ratios or irregular shapes, and the latter often includes multiple neighboring instances into a single proposal, in cases of densely oriented text. To tackle these problems, we propose Mask TextSpotter v3, an end-to-end trainable scene text spotter that adopts a Segmentation Proposal Network (SPN) instead of an RPN. Our SPN is anchor-free and gives accurate representations of arbitrary-shape proposals. It is therefore superior to RPN in detecting text instances of extreme aspect ratios or irregular shapes. Furthermore, the accurate proposals produced by SPN allow masked RoI features to be used for decoupling neighboring text instances. As a result, our Mask TextSpotter v3 can handle text instances of extreme aspect ratios or irregular shapes, and its recognition accuracy wont be affected by nearby text or background noise. Specifically, we outperform state-of-the-art methods by 21.9 percent on the Rotated ICDAR 2013 dataset (rotation robustness), 5.9 percent on the Total-Text dataset (shape robustness), and achieve state-of-the-art performance on the MSRA-TD500 dataset (aspect ratio robustness). Code is available at: https://github.com/MhLiao/MaskTextSpotterV3
GuessWhat?! is a two-player visual dialog guessing game where player A asks a sequence of yes/no questions (Questioner) and makes a final guess (Guesser) about a target object in an image, based on answers from player B (Oracle). Based on this dialog history between the Questioner and the Oracle, a Guesser makes a final guess of the target object. Previous baseline Oracle model encodes no visual information in the model, and it cannot fully understand complex questions about color, shape, relationships and so on. Most existing work for Guesser encode the dialog history as a whole and train the Guesser models from scratch on the GuessWhat?! dataset. This is problematic since language encoder tend to forget long-term history and the GuessWhat?! data is sparse in terms of learning visual grounding of objects. Previous work for Questioner introduces state tracking mechanism into the model, but it is learned as a soft intermediates without any prior vision-linguistic insights. To bridge these gaps, in this paper we propose Vilbert-based Oracle, Guesser and Questioner, which are all built on top of pretrained vision-linguistic model, Vilbert. We introduce two-way background/target fusion mechanism into Vilbert-Oracle to account for both intra and inter-object questions. We propose a unified framework for Vilbert-Guesser and Vilbert-Questioner, where state-estimator is introduced to best utilize Vilberts power on single-turn referring expression comprehension. Experimental results show that our proposed models outperform state-of-the-art models significantly by 7%, 10%, 12% for Oracle, Guesser and End-to-End Questioner respectively.
Pre-trained representations are becoming crucial for many NLP and perception tasks. While representation learning in NLP has transitioned to training on raw text without human annotations, visual and vision-language representations still rely heavily on curated training datasets that are expensive or require expert knowledge. For vision applications, representations are mostly learned using datasets with explicit class labels such as ImageNet or OpenImages. For vision-language, popular datasets like Conceptual Captions, MSCOCO, or CLIP all involve a non-trivial data collection (and cleaning) process. This costly curation process limits the size of datasets and hence hinders the scaling of trained models. In this paper, we leverage a noisy dataset of over one billion image alt-text pairs, obtained without expensive filtering or post-processing steps in the Conceptual Captions dataset. A simple dual-encoder architecture learns to align visual and language representations of the image and text pairs using a contrastive loss. We show that the scale of our corpus can make up for its noise and leads to state-of-the-art representations even with such a simple learning scheme. Our visual representation achieves strong performance when transferred to classification tasks such as ImageNet and VTAB. The aligned visual and language representations enables zero-shot image classification and also set new state-of-the-art results on Flickr30K and MSCOCO image-text retrieval benchmarks, even when compared with more sophisticated cross-attention models. The representations also enable cross-modality search with complex text and text + image queries.
We present a collaborative learning method called Mutual Contrastive Learning (MCL) for general visual representation learning. The core idea of MCL is to perform mutual interaction and transfer of contrastive distributions among a cohort of models. Benefiting from MCL, each model can learn extra contrastive knowledge from others, leading to more meaningful feature representations for visual recognition tasks. We emphasize that MCL is conceptually simple yet empirically powerful. It is a generic framework that can be applied to both supervised and self-supervised representation learning. Experimental results on supervised and self-supervised image classification, transfer learning and few-shot learning show that MCL can lead to consistent performance gains, demonstrating that MCL can guide the network to generate better feature representations.
Text-to-image multimodal tasks, generating/retrieving an image from a given text description, are extremely challenging tasks since raw text descriptions cover quite limited information in order to fully describe visually realistic images. We propose a new visual contextual text representation for text-to-image multimodal tasks, VICTR, which captures rich visual semantic information of objects from the text input. First, we use the text description as initial input and conduct dependency parsing to extract the syntactic structure and analyse the semantic aspect, including object quantities, to extract the scene graph. Then, we train the extracted objects, attributes, and relations in the scene graph and the corresponding geometric relation information using Graph Convolutional Networks, and it generates text representation which integrates textual and visual semantic information. The text representation is aggregated with word-level and sentence-level embedding to generate both visual contextual word and sentence representation. For the evaluation, we attached VICTR to the state-of-the-art models in text-to-image generation.VICTR is easily added to existing models and improves across both quantitative and qualitative aspects.