Do you want to publish a course? Click here

Corotating dyonic binary black holes

61   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper is dedicated to derive and study binary systems of identical corotating dyonic black holes separated by a massless strut -- two 5-parametric corotating binary black hole models endowed with both electric and magnetic charges-- where the dyonic black holes carrying equal/opposite electromagnetic charges in the first/second model satisfy the extended Smarr formula for the mass including the magnetic charge as a fourth conserved parameter.



rate research

Read More

In the present paper binary configurations of identical corotating Kerr-Newman black holes separated by a massless strut are derived and studied. After solving the axis conditions and establishing the absence of magnetic charges in the solution, one gets two 4-parametric corotating binary black hole models endowed with electric charge, where each source contains equal/opposite electric charge in the first/second configuration. Since the black hole horizons are given by concise expressions in terms of physical parameters, all their thermodynamical properties satisfying the Smarr relation for the mass are also obtained. We discuss the physical limits of both models.
In this paper, we investigate thermodynamical structure of dyonic black holes in the presence of gravitys rainbow. We confirm that for super magnetized and highly pressurized scenarios, the number of black holes phases is reduced to a single phase. In addition, due to specific coupling of rainbow functions, it is possible to track the effects of temporal and spatial parts of our setup on thermodynamical quantities/behaviors including equilibrium point, existence of multiple phases, possible phase transitions and conditions for having a uniform stable structure.
In this paper, we investigate a class of $5$-dimensional black holes in the presence of Gauss-Bonnet gravity with dyonic charges. At first step, thermodynamical quantities of the black holes and their behaviors are explored for different limits. Thermal stability and the possibility of the van der Waals like phase transition are addressed and the effects of different parameters on them are investigated. The second part is devoted to simulation of the trajectory of particles around these black holes and investigation of the angular frequency of particles motion. The main goal is understanding the effects of higher curvature gravity (Gauss-Bonnet gravity) and magnetic charge on the structure of black holes and the geodesic paths of particles moving around these black holes.
154 - Feiyu Yao , Jun Tao 2020
In this paper, we investigate the thermodynamics of dyonic black holes with the presence of power Maxwell electromagnetic field in the extended phase space, which includes the cosmological constant $Lambda$ as a thermodynamic variable. For a generic power Maxwell black hole with the electric charge and magnetic charge, the equation of state is given as the function of rescaled temperature $tilde{T}$ in terms of other rescaled variables $ tilde{r}_{+}$, $tilde{q}$ and $tilde{h}$, where $r_{+}$ is the horizon radius, $q$ is the electric charge and $h$ is some magnetic parameter. For some values of $tilde{q}$ and $tilde{h}$, the phase structure of the black hole is uniquely determined. Moreover the peculiarity of multiple temperature with some fixed parameter configurations results in more rich phase structures. Focusing on the power Maxwell Lagrangian with $mathcal{L} left( sright) =s^{2}$, we obtain the corresponding phase diagrams in the $ tilde{q}$-$tilde{h}$ plane, then analyse the black holes phase structure and critical behaviour. For this case, the critical line is semi-infinite and extends to $tilde{h}=infty$. We also examine thermal stabilities of these black holes.
Black hole (BH) shadows in dynamical binary BHs (BBHs) have been produced via ray-tracing techniques on top of expensive fully non-linear numerical relativity simulations. We show that the main features of these shadows are captured by a simple quasi-static resolution of the photon orbits on top of the static double-Schwarzschild family of solutions. Whilst the latter contains a conical singularity between the line separating the two BHs, this produces no major observable effect on the shadows, by virtue of the underlying cylindrical symmetry of the problem. This symmetry is also present in the stationary BBH solution comprising two Kerr BHs separated by a massless strut. We produce images of the shadows of the exact stationary co-rotating (even) and counter-rotating (odd) stationary BBH configurations. This allow us to assess the impact on the binary shadows of the intrinsic spin of the BHs, contrasting it with the effect of the orbital angular momentum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا