Do you want to publish a course? Click here

Lookahead and Hybrid Sample Allocation Procedures for Multiple Attribute Selection Decisions

86   0   0.0 ( 0 )
 Added by Jeffrey Herrmann
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Attributes provide critical information about the alternatives that a decision-maker is considering. When their magnitudes are uncertain, the decision-maker may be unsure about which alternative is truly the best, so measuring the attributes may help the decision-maker make a better decision. This paper considers settings in which each measurement yields one sample of one attribute for one alternative. When given a fixed number of samples to collect, the decision-maker must determine which samples to obtain, make the measurements, update prior beliefs about the attribute magnitudes, and then select an alternative. This paper presents the sample allocation problem for multiple attribute selection decisions and proposes two sequential, lookahead procedures for the case in which discrete distributions are used to model the uncertain attribute magnitudes. The two procedures are similar but reflect different quality measures (and loss functions), which motivate different decision rules: (1) select the alternative with the greatest expected utility and (2) select the alternative that is most likely to be the truly best alternative. We conducted a simulation study to evaluate the performance of the sequential procedures and hybrid procedures that first allocate some samples using a uniform allocation procedure and then use the sequential, lookahead procedure. The results indicate that the hybrid procedures are effective; allocating many (but not all) of the initial samples with the uniform allocation procedure not only reduces overall computational effort but also selects alternatives that have lower average opportunity cost and are more often truly best.



rate research

Read More

Machine learning is a powerful tool for predicting human-related outcomes, from credit scores to heart attack risks. But when deployed, learned models also affect how users act in order to improve outcomes, whether predicted or real. The standard approach to learning is agnostic to induced user actions and provides no guarantees as to the effect of actions. We provide a framework for learning predictors that are both accurate and promote good actions. For this, we introduce look-ahead regularization which, by anticipating user actions, encourages predictive models to also induce actions that improve outcomes. This regularization carefully tailors the uncertainty estimates governing confidence in this improvement to the distribution of model-induced actions. We report the results of experiments on real and synthetic data that show the effectiveness of this approach.
We use decision theory to confront uncertainty that is sufficiently broad to incorporate models as approximations. We presume the existence of a featured collection of what we call structured models that have explicit substantive motivations. The decision maker confronts uncertainty through the lens of these models, but also views these models as simplifications, and hence, as misspecified. We extend min-max analysis under model ambiguity to incorporate the uncertainty induced by acknowledging that the models used in decision-making are simplified approximations. Formally, we provide an axiomatic rationale for a decision criterion that incorporates model misspecification concerns.
The combination of energy harvesting and large-scale multiple antenna technologies provides a promising solution for improving the energy efficiency (EE) by exploiting renewable energy sources and reducing the transmission power per user and per antenna. However, the introduction of energy harvesting capabilities into large-scale multiple antenna systems poses many new challenges for energy-efficient system design due to the intermittent characteristics of renewable energy sources and limited battery capacity. Furthermore, the total manufacture cost and the sum power of a large number of radio frequency (RF) chains can not be ignored, and it would be impractical to use all the antennas for transmission. In this paper, we propose an energy-efficient antenna selection and power allocation algorithm to maximize the EE subject to the constraint of users quality of service (QoS). An iterative offline optimization algorithm is proposed to solve the non-convex EE optimization problem by exploiting the properties of nonlinear fractional programming. The relationships among maximum EE, selected antenna number, battery capacity, and EE-SE tradeoff are analyzed and verified through computer simulations.
This paper addresses the task allocation problem for multi-robot systems. The main issue with the task allocation problem is inherent complexity that makes finding an optimal solution within a reasonable time almost impossible. To hand the issue, this paper develops a task allocation algorithm that can be decentralised by leveraging the submodularity concepts and sampling process. The theoretical analysis reveals that the proposed algorithm can provide approximation guarantee of $1/2$ for the monotone submodular case and $1/4$ for the non-monotone submodular case in average sense with polynomial time complexity. To examine the performance of the proposed algorithm and validate the theoretical analysis results, we design a task allocation problem and perform numerical simulations. The simulation results confirm that the proposed algorithm achieves solution quality, which is comparable to a state-of-the-art algorithm in the monotone case, and much better quality in the non-monotone case with significantly less computational complexity.
We consider the problem of committee selection from a fixed set of candidates where each candidate has multiple quantifiable attributes. To select the best possible committee, instead of voting for a candidate, a voter is allowed to approve the preferred attributes of a given candidate. Though attribute based preference is addressed in several contexts, committee selection problem with attribute approval of voters has not been attempted earlier. A committee formed on attribute preferences is more likely to be a better representative of the qualities desired by the voters and is less likely to be susceptible to collusion or manipulation. In this work, we provide a formal study of the different aspects of this problem and define properties of weak unanimity, strong unanimity, simple justified representations and compound justified representation, that are required to be satisfied by the selected committee. We show that none of the existing vote/approval aggregation rules satisfy these new properties for attribute aggregation. We describe a greedy approach for attribute aggregation that satisfies the first three properties, but not the fourth, i.e., compound justified representation, which we prove to be NP-complete. Furthermore, we prove that finding a committee with justified representation and the highest approval voting score is NP-complete.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا