We classify the asymptotic charges of a class of polyhomogeneous asymptotically-flat spacetimes with finite shear, generalising recent results on smooth asymptotically-flat spacetimes. Polyhomogenous spacetimes are a formally consistent class of spacetimes that do not satisfy the well-known peeling property. As such, they constitute a more physical class of asymptotically-flat spacetimes compared to the smooth class. In particular, we establish that the generalised conserved non-linear Newman-Penrose charges that are known to exist for such spacetimes are a subset of asymptotic BMS charges.