Do you want to publish a course? Click here

Results on Low-Mass Weakly Interacting Massive Particles from an 11 kg-day Target Exposure of DAMIC at SNOLAB

92   0   0.0 ( 0 )
 Added by Alvaro Chavarria
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present constraints on the existence of weakly interacting massive particles (WIMPs) from an 11 kg-day target exposure of the DAMIC experiment at the SNOLAB underground laboratory. The observed energy spectrum and spatial distribution of ionization events with electron-equivalent energies $>$200 eV$_{rm ee}$ in the DAMIC CCDs are consistent with backgrounds from natural radioactivity. An excess of ionization events is observed above the analysis threshold of 50 eV$_{rm ee}$. While the origin of this low-energy excess requires further investigation, our data exclude spin-independent WIMP-nucleon scattering cross sections $sigma_{chi-n}$ as low as $3times 10^{-41}$ cm$^2$ for WIMPs with masses $m_{chi}$ from 7 to 10 GeV$c^{-2}$ . These results are the strongest constraints from a silicon target on the existence of WIMPs with $m_{chi}$$<$9 GeV$c^{-2}$ and are directly relevant to any dark matter interpretation of the excess of nuclear-recoil events observed by the CDMS silicon experiment in 2013.



rate research

Read More

We present results of a dark matter search performed with a 0.6 kg day exposure of the DAMIC experiment at the SNOLAB underground laboratory. We measure the energy spectrum of ionization events in the bulk silicon of charge-coupled devices down to a signal of 60 eV electron equivalent. The data are consistent with radiogenic backgrounds, and constraints on the spin-independent WIMP-nucleon elastic-scattering cross section are accordingly placed. A region of parameter space relevant to the potential signal from the CDMS-II Si experiment is excluded using the same target for the first time. This result obtained with a limited exposure demonstrates the potential to explore the low-mass WIMP region (<10 GeV/$c^{2}$) of the upcoming DAMIC100, a 100 g detector currently being installed in SNOLAB.
We report direct-detection constraints on light dark matter particles interacting with electrons. The results are based on a method that exploits the extremely low levels of leakage current of the DAMIC detector at SNOLAB of 2-6$times$10$^{-22}$ A cm$^{-2}$. We evaluate the charge distribution of pixels that collect $<10~rm{e^-}$ for contributions beyond the leakage current that may be attributed to dark matter interactions. Constraints are placed on so-far unexplored parameter space for dark matter masses between 0.6 and 100 MeV$c^{-2}$. We also present new constraints on hidden-photon dark matter with masses in the range $1.2$-$30$ eV$c^{-2}$.
116 - H. Jiang , L. P. Jia , Q. Yue 2018
We report the first results of a light weakly interacting massive particles (WIMPs) search from the CDEX-10 experiment with a 10 kg germanium detector array immersed in liquid nitrogen at the China Jinping Underground Laboratory with a physics data size of 102.8 kg day. At an analysis threshold of 160 eVee, improved limits of 8 $times 10^{-42}$ and 3 $times 10^{-36}$ cm$^{2}$ at a 90% confidence level on spin-independent and spin-dependent WIMP-nucleon cross sections, respectively, at a WIMP mass ($m_{chi}$) of 5 GeV/${c}^2$ are achieved. The lower reach of $m_{chi}$ is extended to 2 GeV/${c}^2$.
We introduce the fully-depleted charge-coupled device (CCD) as a particle detector. We demonstrate its low energy threshold operation, capable of detecting ionizing energy depositions in a single pixel down to 50 eVee. We present results of energy calibrations from 0.3 keVee to 60 keVee, showing that the CCD is a fully active detector with uniform energy response throughout the silicon target, good resolution (Fano ~0.16), and remarkable linear response to electron energy depositions. We show the capability of the CCD to localize the depth of particle interactions within the silicon target. We discuss the mode of operation and unique imaging capabilities of the CCD, and how they may be exploited to characterize and suppress backgrounds. We present the first results from the deployment of 250 um thick CCDs in SNOLAB, a prototype for the upcoming DAMIC100. DAMIC100 will have a target mass of 0.1 kg and should be able to directly test the CDMS-Si signal within a year of operation.
We report a new search of weakly interacting massive particles (WIMPs) using the combined low background data sets in 2016 and 2017 from the PandaX-II experiment in China. The latest data set contains a new exposure of 77.1 live day, with the background reduced to a level of 0.8$times10^{-3}$ evt/kg/day, improved by a factor of 2.5 in comparison to the previous run in 2016. No excess events were found above the expected background. With a total exposure of 5.4$times10^4$ kg day, the most stringent upper limit on spin-independent WIMP-nucleon cross section was set for a WIMP with mass larger than 100 GeV/c$^2$, with the lowest exclusion at 8.6$times10^{-47}$ cm$^2$ at 40 GeV/c$^2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا