In this paper the scattering between a wobbling kink and a wobbling antikink in the standard $phi^4$ model is numerically investigated. The dependence of the final velocities, wobbling amplitudes and frequencies of the scattered kinks on the collision velocity and on the initial wobbling amplitude is discussed. The fractal structure becomes more intricate due to the emergence of new resonance windows and the splitting of those arising in the non-excited kink scattering. Outside this phase the final wobbling amplitude exhibits a linear dependence of the collision velocity whereas the final frequency is a decreasing function. By contrast these magnitudes are almost independent of the initial wobbling amplitude.
The system consisting of a fermion in the background of a wobbling kink is studied in this paper. To investigate the impact of the wobbling on the fermion-kink interaction, we employ the time-dependent perturbation theory formalism in quantum mechanics. To do so, we compute the transition probabilities between states given in terms of the Bogoliubov coefficients. We derive Fermis golden rule for the model, which allows the transition to the continuum at a constant rate if the fermion-kink coupling constant is smaller than the wobbling frequency. Moreover, we study the system replacing the shape mode with a quasinormal mode. In this case, the transition rate to continuum decays in time due to the leakage of the mode, and the final transition probability decreases sharply for large coupling constants in a way that is analogous to Fermis golden rule. Throughout the paper, we compare the perturbative results with numerical simulations and show that they are in good agreement.
We present and study new mechanism of interaction between the solitons based on the exchange interaction mediated by the localized fermion states. As particular examples, we consider solutions of simple 1+1 dimensional scalar field theories with self-interaction potentials, including sine-Gordon model and the polynomial $phi^4$, $phi^6$ models, coupled to the Dirac fermions with back-reaction. We discover that there is an additional fermion exchange interaction between the solitons, it leads to the formation of static multi-soliton bound states. Further, we argue that similar mechanisms of formation of stable coupled multi-soliton configurations can be observed for a wide class of physical systems.
Sine-Gordon kinks are a much studied integrable system that possesses multi-soliton solutions. Recent studies on sine-Gordon kinks with space-dependent square-well-type potentials have revealed interesting dynamics of a single kink interacting with wells and barriers. In this paper, we study a class of smooth space-dependent potentials and discuss the dynamics of one kink in the presence of different wells. We also present values for the critical velocity for different types of barriers. Furthermore, we study two kinks interacting with various wells and describe interesting trajectories such as double-trapping, kink knock-out and double-escape.
We derive the BPS equations for D3-branes embedded in AdS_5 X S^5 that preserve at least two supercharges. These are given in terms of conditions on the pullbacks of some space-time differential four-forms. Solutions to our equations are shown to describe all the known giant and dual-giant gravitons in AdS_5 X S^5. We then argue that the configuration spaces of dual-giants can be mapped to non-compact hyperbol
In this paper, kink scattering in the dimensional reduction of the bosonic sector of a one-parameter family of generalized Wess-Zumino models with three vacuum points is discussed. The value of the model parameter determines the specific location of the vacua. The influence of the vacuum arrangements (evolving from three collinear vacua to three vacua placed at the vertices of an equilateral triangle) on the kink scattering is investigated. Two different regimes can be distinguished: in the first one, two symmetric BPS kinks/antikinks arise whereas in the second one a new different BPS kink/antikink emerges, with the exception of a three-fold rotational symmetry case, where the three topological defects are identical. The scattering between the two symmetric kinks is thoroughly analyzed. Two different scattering channels have been found: kink-kink reflection and kink-kink hybridization. In the last case, the collision between the two symmetric kinks gives rise to the third different kink. Resonance phenomena also appear allowing a vibrating kink to split into two symmetric kinks moving away.