No Arabic abstract
The nature of galactic spiral arms in disc galaxies remains elusive. Regardless of the spiral model, arms are expected to play a role in sculpting the star-forming interstellar medium. As such, different arm models may result in differences in the structure of the interstellar medium and molecular cloud properties. In this study we present simulations of galactic discs subject to spiral arm perturbations of different natures. We find very little difference in how the cloud population or gas kinematics vary between the different grand-design spirals, indicting that the interstellar medium on cloud scales cares little about where spiral arms come from. We do, however, see a difference in the interarm/arm mass spectra, {and minor differences in tails of the distributions of cloud properties} (as well as radial variations in the stellar/gaseous velocity dispersions). These features can be attributed to differences in the radial dependence of the pattern speeds between the different spiral models, and could act as a metric of the nature of spiral structure in observational studies.
We investigate how the properties of spiral arms relate to other fundamental galaxy properties, including bars and disc breaks. We use previously published measurements of those properties, and our own measurements of arm and bar contrasts for a large sample of galaxies, using $3.6 mathrm{mu m}$ images from the Spitzer Survey of Stellar Structure in Galaxies (S4G). Flocculent galaxies are clearly distinguished from other spiral arm classes, especially by their lower stellar mass and surface density. Multi-armed and grand-design galaxies are similar in most of their fundamental parameters, excluding some bar properties and the bulge-to-total ratio. Based on these results, we revisit the sequence of spiral arm classes, and discuss classical bulges as a necessary condition for standing spiral wave modes in grand-design galaxies. We find a strong correlation between bulge-to-total ratio and bar contrast, and a weaker correlation between arm and bar contrasts. Barred and unbarred galaxies exhibit similar arm contrasts, but the highest arm contrasts are found exclusively in barred galaxies. Interestingly, the bar contrast, and its increase from flocculent to grand-design galaxies, is systematically more significant than that of the arm contrast. We corroborate previous findings concerning a connection between bars and disc breaks. In particular, in grand-design galaxies the bar contrast correlates with the normalised disc break radius. This does not hold for other spiral arm classes or the arm contrast. Our measurements of arm and bar contrast and radial contrast profiles are publicly available.
With the advent of modern observational efforts providing extensive giant molecular cloud catalogues, understanding the evolution of such clouds in a galactic context is of prime importance. While numerous previous numerical and theoretical works have focused on the cloud properties in isolated discs, few have looked into the cloud population in an interacting disc system. We present results of the first study investigating the evolution of the cloud population in galaxy experiencing an M51-like tidal fly-by using numerical simulations including star formation, interstellar medium cooling and stellar feedback. We see the cloud population shift to large unbound clouds in the wake of the companion passage, with the largest clouds appearing as fleeting short-lived agglomerations of smaller clouds within the tidal spiral arms, brought together by large scale streaming motions. These are then sheared apart as they leave the protection of the spiral arms. Clouds appear to lead diverse lives, even within similar environments, with some being born from gas shocked by filaments streaming into the spiral arms, and others from effectively isolated smaller colliding pairs. Overall this cloud population produces a shallower mass function than the disc in isolation, especially in the arms compared to the inter-arm regions. Direct comparisons to M51 observations show similarities between cloud populations, though models tailored to the mass and orbital models of M51 appear necessary to precisely reproduce the cloud population.
Fragmentation of a spiral arm is thought to drive the formation of giant clumps in galaxies. Using linear perturbation analysis for self-gravitating spiral arms, we derive an instability parameter and define the conditions for clump formation. We extend our analysis to multi-component systems that consist of gas and stars in an external potential. We then perform numerical simulations of isolated disc galaxies with isothermal gas, and compare the results with the prediction of our analytic model. Our model describes accurately the evolution of the spiral arms in our simulations, even when spiral arms dynamically interact with one another. We show that most of the giant clumps formed in the simulated disc galaxies satisfy the instability condition. The clump masses predicted by our model are in agreement with the simulation results, but the growth time-scale of unstable perturbations is overestimated by a factor of a few. We also apply our instability analysis to derive scaling relations of clump properties. The expected scaling relation between the clump size, velocity dispersion, and circular velocity is slightly different from that given by the Toomre instability analysis, but neither is inconsistent with currently available observations. We argue that the spiral-arm instability is a viable formation mechanism of giant clumps in gas-rich disc galaxies.
In this paper we study the morphological properties of spiral galaxies, including measurements of spiral arm number and pitch angle. Using Galaxy Zoo 2, a stellar mass-complete sample of 6,222 SDSS spiral galaxies is selected. We use the machine vision algorithm SpArcFiRe to identify spiral arm features and measure their associated geometries. A support vector machine classifier is employed to identify reliable spiral features, with which we are able to estimate pitch angles for half of our sample. We use these machine measurements to calibrate visual estimates of arm tightness, and hence estimate pitch angles for our entire sample. The properties of spiral arms are compared with respect to various galaxy properties. The star formation properties of galaxies vary significantly with arm number, but not pitch angle. We find that galaxies hosting strong bars have spiral arms substantially ($4-6^mathrm{o}$) looser than unbarred galaxies. Accounting for this, spiral arms associated with many-arm structures are looser (by 2$^mathrm{o}$) than those in two-arm galaxies. In contrast to this average trend, galaxies with greater bulge-to-total stellar mass ratios display both fewer and looser spiral arms. This effect is primarily driven by the galaxy disc, such that galaxies with more massive discs contain more spiral arms with tighter pitch angles. This implies that galaxy central mass concentration is not the dominant cause of pitch angle and arm number variations between galaxies, which in turn suggests that not all spiral arms are governed by classical density waves or modal theories.
Interarm star formation contributes significantly to a galaxys star formation budget, and provides an opportunity to study stellar birthplaces unperturbed by spiral arm dynamics. Using optical integral field spectroscopy of the nearby galaxy NGC 628 with VLT/MUSE, we construct Halpha maps including detailed corrections for dust extinction and stellar absorption to identify 391 HII regions at 35pc resolution over 12 kpc^2. Using tracers sensitive to the underlying gravitational potential, we associate HII regions with either arm (271) or interarm (120) environments. Using our full spectral coverage of each region, we find that most HII region physical properties (luminosity, size, metallicity, ionization parameter) are independent of environment. We calculate the fraction of Halpha luminosity due to the diffuse ionized gas (DIG) background contaminating each HII region, and find the DIG surface brightness to be higher within HII regions compared to the surroundings, and slightly higher within arm HII regions. Use of the temperature sensitive [SII]/Halpha line ratio map instead of the Halpha surface brightness to identify HII region boundaries does not change this result. Using the dust attenuation as a tracer of the gas, we find depletion times consistent with previous work (2 x 10^9 yr) with no differences between the arm and interarm, however this is very sensitive to the DIG correction. Unlike molecular clouds, which can be dynamically affected by the galactic environment, we see fairly consistent HII region properties in both arm and interarm environments. This suggests either a difference in arm star formation and feedback, or a decoupling of dense star forming clumps from the more extended surrounding molecular gas.