Do you want to publish a course? Click here

Interplay between superconductivity and non-Fermi liquid at a quantum-critical point in a metal. III: The $gamma$ model and its phase diagram across $gamma = 1$

180   0   0.0 ( 0 )
 Added by Yi-Ming Wu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we continue our analysis of the interplay between the pairing and the non-Fermi liquid behavior in a metal for a set of quantum-critical models with an effective dynamical electron-electron interaction $V(Omega_m) propto 1/|Omega_m|^gamma$ (the $gamma$-model). We analyze both the original model and its extension, in which we introduce an extra parameter $N$ to account for non-equal interactions in the particle-hole and particle-particle channel. In two previous papers(arXiv:2004.13220 and arXiv:2006.02968), we considered the case $0 < gamma <1$ and argued that (i) at $T=0$, there exists an infinite discrete set of topologically different gap functions, $Delta_n (omega_m)$, all with the same spatial symmetry, and (ii) each $Delta_n$ evolves with temperature and terminates at a particular $T_{p,n}$. In this paper, we analyze how the system behavior changes between $gamma <1$ and $gamma >1$, both at $T=0$ and a finite $T$. The limit $gamma to 1$ is singular due to infra-red divergence of $int d omega_m V(Omega_m)$, and the system behavior is highly sensitive to how this limit is taken. We show that for $N =1$, the divergencies in the gap equation cancel out, and $Delta_n (omega_m)$ gradually evolve through $gamma=1$ both at $T=0$ and a finite $T$. For $N eq 1$, divergent terms do not cancel, and a qualitatively new behavior emerges for $gamma >1$. Namely, the form of $Delta_n (omega_m)$ changes qualitatively, and the spectrum of condensation energies, $E_{c,n}$ becomes continuous at $T=0$. We introduce different extension of the model, which is free from singularities for $gamma >1$.



rate research

Read More

In this paper, the sixth in series, we continue our analysis of the interplay between non-Fermi liquid and pairing in the effective low-energy model of fermions with singular dynamical interaction $V(Omega_m) = {bar g}^gamma/|Omega_m|^gamma$ (the $gamma$ model). The model describes low-energy physics of various quantum-critical metallic systems at the verge of an instability towards density or spin order, pairing of fermions at the half-filled Landau level, color superconductivity, and pairing in SYK-type models. In previous Papers I-V we analyzed the $gamma$ model for $gamma leq 2$ and argued that the ground state is an ordinary superconductor for $gamma <1$, a peculiar one for $1<gamma <2$, when the phase of the gap function winds up along real frequency axis due to emerging dynamical vortices in the upper half-plane of frequency, and that there is a quantum phase transition at $gamma =2$, when the number of dynamical vortices becomes infinite. In this paper we consider larger $2< gamma <3$ and address the issue what happens on the other side of this quantum transition. We argue that the system moves away from criticality in that the number of dynamical vortices becomes finite and decreases with increasing $gamma$. The ground state is again a superconductor, however a highly unconventional one with a non-integrable singularity in the density of states at the lower edge of the continuum. This implies that the spectrum of excited states now contains a level with a macroscopic degeneracy, proportional to the total number of states in the system. We argue that the phase diagram in variables $(T,gamma)$ contains two distinct superconducting phases for $gamma <2$ and $gamma >2$, and an intermediate pseudogap state of preformed pairs.
In this paper we continue our analysis of the interplay between the pairing and the non-Fermi liquid behavior in a metal for a set of quantum-critical (QC) systems with an effective dynamical electron-electron interaction $V(Omega_m) propto 1/|Omega_m|^gamma$ (the $gamma$-model). In previous papers we studied the cases $0<gamma <1$ and $gamma approx 1$. We argued that the pairing by a gapless boson is fundamentally different from BCS/Eliashberg pairing by a massive boson as for the former there exists an infinite number of topologically distinct solutions for the gap function $Delta_n (omega_m)$ at $T=0$ ($n=0,1,2...$), each with its own condensation energy $E_{c,n}$. Here we extend the analysis to larger $1< gamma <2$. We argue that the discrete set of solutions survives, and the spectrum of $E_{c,n}$ gets progressively denser as $gamma$ approaches $2$ and eventually becomes continuous at $gamma to 2$. This increases the strength of longitudinal gap fluctuations, which tend to reduce the actual superconducting $T_c$ and give rise to a pseudogap region of preformed pairs. We also detect two features on the real axis for $gamma >1$ which become critical at $gammato 2$. First, the density of states evolves towards a set of discrete $delta-$functions. Second, an array of dynamical vortices emerges in the upper frequency half-plane. These two features come about because on a real axis, the real part of the interaction, $V (Omega) propto cos(pi gamma/2)/|Omega|^gamma$, becomes repulsive for $gamma >1$, and the imaginary $V^{} (Omega) propto sin(pi gamma/2)/|Omega|^gamma$, gets progressively smaller at $gamma to 2$. The features on the real axis are consistent with the development of a continuum spectrum of $E_{c,n}$ obtained using $Delta_n (omega_m)$ on the Matsubara axis. We consider the case $gamma =2$ separately in the next paper.
This paper is a continuation and a partial summary of our analysis of the pairing at a quantum-critical point (QCP) in a metal for a set of quantum-critical systems, whose low-energy physics is described by an effective model with dynamical electron-electron interaction $V(Omega_m) = ({bar g}/|Omega_m|)^gamma$ (the $gamma$-model). Examples include pairing at the onset of various spin and charge density-wave and nematic orders and pairing in SYK-type models. In previous papers, we analyzed the physics for $gamma <2$. We have shown that the onset temperature for the pairing $T_p$ is finite, of order ${bar g}$, yet the gap equation at $T=0$ has an infinite set of solutions within the same spatial symmetry. As the consequence, the condensation energy $E_c$ has an infinite number of minima. The spectrum of $E_c$ is discrete, but becomes more dense as $gamma$ increases. Here we consider the case $gamma =2$. The $gamma=2$ model attracted special interest in the past as it describes the pairing by an Einstein phonon in the limit when the dressed phonon mass $omega_D$ vanishes. We show that for $gamma =2$, the spectrum of $E_c$ becomes continuous. We argue that the associated gapless longitudinal fluctuations destroy superconducting phase coherence at a finite $T$, such that at $0<T< T_p$ the system displays pseudogap behavior. We show that for each gap function from the continuum spectrum, there is an infinite array of dynamical vortices in the upper half-plane of frequency. For the electron-phonon case, our results show that $T_p =0.1827 {bar g}$, obtained in earlier studies, marks the onset of the pseudogap behavior of preformed pairs, while the actual superconducting $T_c$vanishes at $omega_D to 0$.
Non-Fermi liquids are strange metals whose physical properties deviate qualitatively from those of conventional metals due to strong quantum fluctuations. In this paper, we report transport measurements on the FeSe$_{1-x}$S$_x$ superconductor, which has a quantum critical point of a nematic order without accompanying antiferromagnetism. We find that in addition to a linear-in-temperature resistivity $rho_{xx}propto T$, which is close to the Planckian limit, the Hall angle varies as $cot theta_{rm H} propto T^2$ and the low-field magnetoresistance is well scaled as $Deltarho_{xx}/rho_{xx}propto tan^2 theta_{rm H}$ in the vicinity of the nematic quantum critical point. This set of anomalous charge transport properties shows striking resemblance with those reported in cuprate, iron-pnictide and heavy fermion superconductors, demonstrating that the critical fluctuations of a nematic order with ${bf q} approx 0$ can also lead to a breakdown of the Fermi liquid description.
Using determinantal quantum Monte Carlo, we compute the properties of a lattice model with spin $frac 1 2$ itinerant electrons tuned through a quantum phase transition to an Ising nematic phase. The nematic fluctuations induce superconductivity with a broad dome in the superconducting $T_c$ enclosing the nematic quantum critical point. For temperatures above $T_c$, we see strikingly non-Fermi liquid behavior, including a nodal - anti nodal dichotomy reminiscent of that seen in several transition metal oxides. In addition, the critical fluctuations have a strong effect on the low frequency optical conductivity, resulting in behavior consistent with bad metal phenomenology.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا