Do you want to publish a course? Click here

Some Die Filthy Rich: The Diverse Molecular Gas Contents of Post-starburst Galaxies Probed by Dust Absorption

81   0   0.0 ( 0 )
 Added by Hassen Yesuf
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quenched post-starburst galaxies (QPSBs) are a rare but important class of galaxies that show signs of rapid cessation or recent rejuvenation of star formation. A recent observation shows that about half of QPSBs have large amounts of cold gas. This molecular CO sample is, however, too small and is not without limitations. Our work aims to verify previous results by applying a new method to study a uniformly selected sample, more than 10 times larger. In particular, we present detailed analysis of H$alpha$/H$beta$ ratios of face-on QPSBs at $z = 0.02 - 0.15$ and with $M_star = 10^{10}-10^{11},M_odot$. We interpret the H$alpha$/H$beta$ ratios by applying our recent gas mass calibration, which is based on non-PSB galaxies but predicts gas masses that are consistent with CO observations of $sim 100$ PSBs. We estimate the molecular gas by either using PSBs with well-measured H$alpha$/H$beta$ ratios or by measuring them from stacked spectra. Our analysis reveals that QPSBs have a wide range of H$alpha$/H$beta$ ratios and molecular gas fractions that overlap with the typical gas fractions of star-forming or quiescent galaxies: H$alpha$/H$beta approx 3-8$ and $f_mathrm{H_2} approx 1%-20%$ with median $f_mathrm{H_2} approx 4%-6%$, which correspond to $M_mathrm{H_2} approx (1-3) times 10^{9} ,M_odot$. Our results indicate that large reservoirs of cold gas are still present in significant numbers of QPSBs, and that they arguably were not removed or destroyed by feedback from active galactic nuclei.



rate research

Read More

181 - M. M. Pawlik 2019
About 35 years ago a class of galaxies with unusually strong Balmer absorption lines and weak emission lines was discovered in distant galaxy clusters. These objects, alternatively referred to as post-starburst, E+A or k+a galaxies, are now known to occur in all environments and at all redshifts, with many exhibiting compact morphologies and low-surface brightness features indicative of past galaxy mergers. They are commonly thought to represent galaxies that are transitioning from blue to red sequence, making them critical to our understanding of the origins of galaxy bimodality. However, recent observational studies have questioned this simple interpretation. From observations alone, it is challenging to disentangle the different mechanisms that lead to the quenching of star formation in galaxies. Here we present examples of three different evolutionary pathways that lead to galaxies with strong Balmer absorption lines in the EAGLE simulation: classical blue-to-red quenching, blue-to-blue cycle and red-to-red rejuvenation. The first two are found in both post-starburst galaxies and galaxies with truncated star formation. Each pathway is consistent with scenarios hypothesised for observational samples. The fact that post-starburst signatures can be attained via various evolutionary channels explains the diversity of observed properties, and lends support to the idea that slower quenching channels are important at low redshift.
249 - K. Decker French 2015
Post-starburst (or E+A) galaxies are characterized by low H$alpha$ emission and strong Balmer absorption, suggesting a recent starburst, but little current star formation. Although many of these galaxies show evidence of recent mergers, the mechanism for ending the starburst is not yet understood. To study the fate of the molecular gas, we search for CO (1-0) and (2-1) emission with the IRAM 30m and SMT 10m telescopes in 32 nearby ($0.01<z<0.12$) post-starburst galaxies drawn from the Sloan Digital Sky Survey. We detect CO in 17 (53%). Using CO as a tracer for molecular hydrogen, and a Galactic conversion factor, we obtain molecular gas masses of $M(H_2)=10^{8.6}$-$10^{9.8} M_odot$ and molecular gas mass to stellar mass fractions of $sim10^{-2}$-$10^{-0.5}$, comparable to those of star-forming galaxies. The large amounts of molecular gas rule out complete gas consumption, expulsion, or starvation as the primary mechanism that ends the starburst in these galaxies. The upper limits on $M(H_2)$ for the 15 undetected galaxies range from $10^{7.7} M_odot$ to $10^{9.7} M_odot$, with the median more consistent with early-type galaxies than with star-forming galaxies. Upper limits on the post-starburst star formation rates (SFRs) are lower by $sim10times$ than for star-forming galaxies with the same $M(H_2)$. We also compare the molecular gas surface densities ($Sigma_{rm H_2}$) to upper limits on the SFR surface densities ($Sigma_{rm SFR}$), finding a significant offset, with lower $Sigma_{rm SFR}$ for a given $Sigma_{rm H_2}$ than is typical for star-forming galaxies. This offset from the Kennicutt-Schmidt relation suggests that post-starbursts have lower star formation efficiency, a low CO-to-H$_2$ conversion factor characteristic of ULIRGs, and/or a bottom-heavy initial mass function, although uncertainties in the rate and distribution of current star formation remain.
Post-starburst (PSB), or E+A, galaxies represent a rapid transitional phase between major, gas-rich mergers and gas-poor, quiescent early-type galaxies. Surprisingly, many PSBs have been shown to host a significant interstellar medium (ISM), despite theoretical predictions that the majority of star-forming gas should be expelled in AGN- or starburst-driven outflows. To-date, the resolved properties of this surviving ISM have remained unknown. We present high resolution ALMA continuum and CO(2$-$1) observations in six gas- and dust-rich PSBs, revealing for the first time the spatial and kinematic structure of their ISM on sub-kpc scales. We find extremely compact molecular reservoirs, with dust and gas surface densities rivaling those found in (ultra-)luminous infrared galaxies. We observe spatial and kinematic disturbances in all sources, with some also displaying disk-like kinematics. Estimates of the internal turbulent pressure in the gas exceed those of normal star-forming disks by 2$-$4 orders of magnitude, and rival the turbulent gas found in local interacting galaxies, such as the Antennae. Though the source of this high turbulent pressure remains uncertain, we suggest that the high incidence of tidal disruption events (TDEs) in PSBs could play a role. The star formation in these PSBs turbulent central molecular reservoirs is suppressed, forming stars $<$10% as efficiently as galaxies with similar gas surface densities. The fall of star formation in these galaxies was not precipitated by complete gas expulsion or redistribution. Rather, this high-resolution view of PSBs ISM indicates that star formation in their remaining compact gas reservoirs is suppressed by significant turbulent heating.
The traditional picture of post-starburst galaxies as dust- and gas-poor merger remnants, rapidly transitioning to quiescence, has been recently challenged. Unexpected detections of a significant ISM in many post-starbursts raise important questions. Are they truly quiescent and, if so, what mechanisms inhibit further star formation? What processes dominate their ISM energetics? We present an infrared spectroscopic and photometric survey of 33 SDSS-selected E+A post-starbursts, aimed at resolving these questions. We find compact, warm dust reservoirs with high PAH abundances, and total gas and dust masses significantly higher than expected from stellar recycling alone. Both PAH/TIR and dust-to-burst stellar mass ratios are seen to decrease with post-burst age, indicative of the accumulating effects of dust destruction and an incipient transition to hot, early-type ISM properties. Their infrared spectral properties are unique, with dominant PAH emission, very weak nebular lines, unusually strong H$_{2}$ rotational emission, and deep ${rm [C, II]}$ deficits. There is substantial scatter among SFR indicators, and both PAH and TIR luminosities provide overestimates. Even as potential upper limits, all tracers show that the SFR has typically experienced a more than two order-of-magnitude decline since the starburst, and that the SFR is considerably lower than expected given both their stellar masses and molecular gas densities. These results paint a coherent picture of systems in which star formation was, indeed, rapidly truncated, but in which the ISM was $textit{not}$ completely expelled, and is instead supported against collapse by latent or continued injection of turbulent or mechanical heating. The resulting aging burst populations provide a high-soft radiation field which seemingly dominates the E+As unusual ISM energetics.
126 - Philip F. Hopkins 2019
Recently Squire & Hopkins showed that charged dust grains moving through magnetized gas under the influence of any external force (e.g. radiation pressure, gravity) are subject to a spectrum of instabilities. Qualitatively distinct instability families are associated with different Alfvenic or magnetosonic waves and drift or gyro motion. We present a suite of simulations exploring these instabilities, for grains in a homogeneous medium subject to an external acceleration. We vary parameters such as the ratio of Lorentz-to-drag forces on dust, plasma $beta$, size scale, and acceleration. All regimes studied drive turbulent motions and dust-to-gas fluctuations in the saturated state, can rapidly amplify magnetic fields into equipartition with velocity fluctuations, and produce instabilities that persist indefinitely (despite random grain motions). Different parameters produce diverse morphologies and qualitatively different features in dust, but the saturated gas state can be broadly characterized as anisotropic magnetosonic or Alfvenic turbulence. Quasi-linear theory can qualitatively predict the gas turbulent properties. Turbulence grows from small to large scales, and larger-scale modes usually drive more vigorous gas turbulence, but dust velocity and density fluctuations are more complicated. In many regimes, dust forms structures (clumps, filaments, sheets) that reach extreme over-densities (up to $gg 10^{9}$ times mean), and exhibit substantial sub-structure even in nearly-incompressible gas. These can be even more prominent at lower dust-to-gas ratios. In other regimes, dust self-excites scattering via magnetic fluctuations that isotropize and amplify dust velocities, producing fast, diffusive dust motions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا