Monotone skew-product semiflows for Carath{e}odory differential equations and applications


Abstract in English

The first part of the paper is devoted to studying the continuous dependence of the solutions of Caratheodory constant delay differential equations where the vector fields satisfy classical cooperative conditions. As a consequence, when the set of considered vector fields is invariant with respect to the time-translation map, the continuity of the respective induced skew-product semiflows is obtained. These results are important for the study of the long-term behavior of the trajectories. In particular, the construction of semicontinuous semiequilibria and equilibria is extended to the context of ordinary and delay Caratheodory differential equations. Under appropriate assumptions of sublinearity, the existence of a unique continuous equilibrium, whose graph coincides with the pullback attractor for the evolution processes, is shown. The conditions under which such a solution is the forward attractor of the considered problem are outlined. Two examples of application of the developed tools are also provided.

Download