Do you want to publish a course? Click here

Discovery of a mid-infrared protostellar outburst of exceptional amplitude

246   0   0.0 ( 0 )
 Added by Philip Lucas
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of a mid-infrared outburst in a Young Stellar Object (YSO) with an amplitude close to 8 mag at $lambda$$approx$4.6 $mu$m. WISEA J142238.82-611553.7 is one of 23 highly variable WISE sources discovered in a search of Infrared Dark Clouds (IRDCs). It lies within the small IRDC G313.671-0.309 (d$approx$2.6 kpc), seen by the Herschel/HiGal survey as a compact, massive cloud core that may have been measurably warmed by the event. Pre-outburst data from Spitzer in 2004 suggest that it is a class I YSO, a view supported by observation of weak 2.12 $mu$m H$_2$ emission in an otherwise featureless red continuum spectrum taken in 2019 (6 mag below the peak in K$_s$). Spitzer, WISE and VVV data indicate that the outburst began by 2006 and has a duration $>$13 yr, with a fairly flat peak from 2010--2014. The outburst luminosity of a few $times 10^2$ Lsun is consistent with an accretion rate Mdot $approx 10^{-4}$ Msun/yr, comparable to a classical FU Orionis event. The 4.6 $mu$m peak in 2010 implies T = 800-1000 K and a disc radial location R$approx$4.5 au for the emitting region. The colour evolution suggests subsequent progression outward. The apparent absence of the hotter matter expected in thermal instability or MRI models may be due to complete obscuration of the innermost disc, e.g. by an edge-on disc view. Alternatively, disc fragmentation/infalling fragment models might more naturally explain a mid-infrared peak, though this is not yet clear.



rate research

Read More

We report the detection of an infrared selected transient which has lasted at least 5 years, first identified by a large mid-infrared and optical outburst from a faint X-ray source detected with the Chandra X-ray Observatory. In this paper we rule out several scenarios for the cause of this outburst, including a classical nova, a luminous red nova, AGN flaring, a stellar merger, and intermediate luminosity optical transients, and interpret this transient as the result of a Young Stellar Object (YSO) of at least solar mass accreting material from the remains of the dusty envelope from which it formed, in isolation from either a dense complex of cold gas or massive star formation. This object does not fit neatly into other existing categories of large outbursts of YSOs (FU Orionis types) which may be a result of the objects mass, age, and environment. It is also possible that this object is a new type of transient unrelated to YSOs.
We present Herschel/HIFI observations (WISH KP) of 14 water lines in a small sample of galactic massive protostellar objects: NGC6334I(N), DR21(OH), IRAS16272-4837, and IRAS05358+3543. We analyze the gas dynamics from the line profiles. Through modeling of the observations using RATRAN, we estimate outflow, infall, turbulent velocities, molecular abundances, and investigate any correlation with the evolutionary status of each source. The molecular line profiles exhibit a broad component coming from the shocks along the cavity walls associated with the protostars, and an infalling (or expansion for IRAS05358+3543) and passively heated envelope component, with highly supersonic turbulence likely increasing with the distance from the center. Accretion rates between 6.3 10^{-5} and 5.6 10^{-4} msun yr^{-1} are derived from the infall observed in three of our sources. The outer water abundance is estimated to be at the typical value of a few 10^{-8} while the inner abundance varies from 1.7 10^{-6} to 1.4 10^{-4} with respect to H2 depending on the source. We confirm that regions of massive star formation are highly turbulent and that the turbulence likely increases in the envelope with the distance to the star. The inner abundances are lower than the expected 10^{-4} perhaps because our observed lines do not probe deep enough into the inner envelope, or because photodissociation through protostellar UV photons is more efficient than expected. We show that the higher the infall/expansion velocity in the protostellar envelope, the higher is the inner abundance, maybe indicating that larger infall/expansion velocities generate shocks that will sputter water from the ice mantles of dust grains in the inner region. High-velocity water must be formed in the gas-phase from shocked material.
We present the Mid-infrared stellar Diameters and Fluxes compilation Catalogue (MDFC) dedicated to long-baseline interferometry at mid-infrared wavelengths (3-13 mum). It gathers data for half a million stars, i.e. nearly all the stars of the Hipparcos-Tycho catalogue whose spectral type is reported in the SIMBAD database. We cross-match 26 databases to provide basic information, binarity elements, angular diameter, magnitude and flux in the near and mid-infrared, as well as flags that allow us to identify the potential calibrators. The catalogue covers the entire sky with 465 857 stars, mainly dwarfs and giants from B to M spectral types closer than 18 kpc. The smallest reported values reach 0.16 muJy in L and 0.1 muJy in N for the flux, and 2 microarcsec for the angular diameter. We build 4 lists of calibrator candidates for the L- and N-bands suitable with the Very Large Telescope Interferometer (VLTI) sub- and main arrays using the MATISSE instrument. We identify 1 621 candidates for L and 44 candidates for N with the Auxiliary Telescopes (ATs), 375 candidates for both bands with the ATs, and 259 candidates for both bands with the Unit Telescopes (UTs). Predominantly cool giants, these sources are small and bright enough to belong to the primary lists of calibrator candidates. In the near future, we plan to measure their angular diameter with 1% accuracy.
In recent years, dramatic outbursts have been identified toward massive protostars via infrared and millimeter dust continuum and molecular maser emission. The longest lived outburst ($>6$ yr) persists in NGC6334I-MM1, a deeply-embedded object with no near-IR counterpart. Using FORCAST and HAWC+ on SOFIA, we have obtained the first mid-infrared images of this field since the outburst began. Despite being undetected in pre-outburst ground-based 18 $mu$m images, MM1 is now the brightest region at all three wavelengths (25, 37, and 53 $mu$m), exceeding the ultracompact HII region MM3 (NGC6334F). Combining the SOFIA data with ALMA imaging at four wavelengths, we construct a spectral energy distribution of the combination of MM1 and the nearby hot core MM2. The best-fit Robitaille radiative transfer model yields a luminosity of $(4.9pm0.8)times10^4 L_odot$. Accounting for an estimated pre-outburst luminosity ratio MM1:MM2 = $2.1pm0.4$, the luminosity of MM1 has increased by a factor of $16.3pm4.4$. The pre-outburst luminosity implies a protostar of mass 6.7 $M_odot$, which can produce the ionizing photon rate required to power the pre-outburst hypercompact HII region surrounding the likely outbursting protostar MM1B. The total energy and duration of the outburst exceed the S255IR-NIRS3 outburst by a factor of $gtrsim3$, suggesting a different scale of event involving expansion of the protostellar photosphere (to $gtrsim$ 20 $R_odot$), thereby supporting a higher accretion rate ($gtrsim$0.0023 $M_odot$ yr$^{-1}$) and reducing the ionizing photon rate. In the grid of hydrodynamic models of Meyer et al. 2021, the combination of outburst luminosity and magnitude (3) places the NGC6334I-MM1 event in the region of moderate total accretion ($sim$0.1-0.3 $M_odot$) and hence long duration ($sim$40-130 yr).
A snow-line is the region of a protoplanetary disk at which a major volatile, such as water or carbon monoxide, reaches its condensation temperature. Snow-lines play a crucial role in disk evolution by promoting the rapid growth of ice-covered grains. Signatures of the carbon monoxide snow-line (at temperatures of around 20 kelvin) have recently been imaged in the disks surrounding the pre-main-sequence stars TW Hydra and HD163296, at distances of about 30 astronomical units (au) from the star. But the water snow-line of a protoplanetary disk (at temperatures of more than 100 kelvin) has not hitherto been seen, as it generally lies very close to the star (less than 5 au away for solar-type stars). Water-ice is important because it regulates the efficiency of dust and planetesimal coagulation, and the formation of comets, ice giants and the cores of gas giants. Here we report ALMA images at 0.03-arcsec resolution (12 au) of the protoplanetary disk around V883 Ori, a protostar of 1.3 solar masses that is undergoing an outburst in luminosity arising from a temporary increase in the accretion rate. We find an intensity break corresponding to an abrupt change in the optical depth at about 42 au, where the elevated disk temperature approaches the condensation point of water, from which we conclude that the outburst has moved the water snow-line. The spectral behaviour across the snow-line confirms recent model predictions: dust fragmentation and the inhibition of grain growth at higher temperatures results in soaring grain number densities and optical depths. As most planetary systems are expected to experience outbursts caused by accretion during their formation our results imply that highly dynamical water snow-lines must be considered when developing models of disk evolution and planet formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا