No Arabic abstract
The field of quantum Hamiltonian complexity lies at the intersection of quantum many-body physics and computational complexity theory, with deep implications to both fields. The main object of study is the LocalHamiltonian problem, which is concerned with estimating the ground-state energy of a local Hamiltonian and is complete for the class QMA, a quantum generalization of the class NP. A major challenge in the field is to understand the complexity of the LocalHamiltonian problem in more physically natural parameter regimes. One crucial parameter in understanding the ground space of any Hamiltonian in many-body physics is the spectral gap, which is the difference between the smallest two eigenvalues. Despite its importance in quantum many-body physics, the role played by the spectral gap in the complexity of the LocalHamiltonian is less well-understood. In this work, we make progress on this question by considering the precise regime, in which one estimates the ground-state energy to within inverse exponential precision. Computing ground-state energies precisely is a task that is important for quantum chemistry and quantum many-body physics. In the setting of inverse-exponential precision, there is a surprising result that the complexity of LocalHamiltonian is magnified from QMA to PSPACE, the class of problems solvable in polynomial space. We clarify the reason behind this boost in complexity. Specifically, we show that the full complexity of the high precision case only comes about when the spectral gap is exponentially small. As a consequence of the proof techniques developed to show our results, we uncover important implications for the representability and circuit complexity of ground states of local Hamiltonians, the theory of uniqueness of quantum witnesses, and techniques for the amplification of quantum witnesses in the presence of postselection.
In this work, we make a connection between two seemingly different problems. The first problem involves characterizing the properties of entanglement in the ground state of gapped local Hamiltonians, which is a central topic in quantum many-body physics. The second problem is on the quantum communication complexity of testing bipartite states with EPR assistance, a well-known question in quantum information theory. We construct a communication protocol for testing (or measuring) the ground state and use its communication complexity to reveal a new structural property for the ground state entanglement. This property, known as the entanglement spread, roughly measures the ratio between the largest and the smallest Schmidt coefficients across a cut in the ground state. Our main result shows that gapped ground states possess limited entanglement spread across any cut, exhibiting an area law behavior. Our result quite generally applies to any interaction graph with an improved bound for the special case of lattices. This entanglement spread area law includes interaction graphs constructed in [Aharonov et al., FOCS14] that violate a generalized area law for the entanglement entropy. Our construction also provides evidence for a conjecture in physics by Li and Haldane on the entanglement spectrum of lattice Hamiltonians [Li and Haldane, PRL08]. On the technical side, we use recent advances in Hamiltonian simulation algorithms along with quantum phase estimation to give a new construction for an approximate ground space projector (AGSP) over arbitrary interaction graphs.
The $S=1$ Affleck-Kennedy-Lieb-Tasaki (AKLT) quantum spin chain was the first rigorous example of an isotropic spin system in the Haldane phase. The conjecture that the $S=3/2$ AKLT model on the hexagonal lattice is also in a gapped phase has remained open, despite being a fundamental problem of ongoing relevance to condensed-matter physics and quantum information theory. Here we confirm this conjecture by demonstrating the size-independent lower bound $Delta >0.006$ on the spectral gap of the hexagonal model with periodic boundary conditions in the thermodynamic limit. Our approach consists of two steps combining mathematical physics and high-precision computational physics. We first prove a mathematical finite-size criterion which gives an analytical, size-independent bound on the spectral gap if the gap of a particular cut-out subsystem of 36 spins exceeds a certain threshold value. Then we verify the finite-size criterion numerically by performing state-of-the-art DMRG calculations on the subsystem.
Quantum chemistry is one of the important applications of quantum information technology. Especially, an estimation of the energy gap between a ground state and excited state of a target Hamiltonian corresponding to a molecule is essential. In the previous approach, an energy of the ground state and that of the excited state are estimated separately, and the energy gap can be calculated from the subtraction between them. Here, we propose a direct estimation of the energy gap between the ground state and excited state of the target Hamiltonian with quantum annealing. The key idea is to combine a Ramsey type measurement with the quantum annealing. This provides an oscillating signal with a frequency of the energy gap, and a Fourier transform of the signal let us know the energy gap. Based on typical parameters of superconducting qubits, we numerically investigate the performance of our scheme when we estimate an energy gap between the ground state and first excited state of the Hamiltonian. We show robustness against non-adiabatic transitions between the ground state and first-excited state. Our results pave a new way to estimate the energy gap of the Hamiltonian for quantum chemistry.
Classical satisfiability (SAT) and quantum satisfiability (QSAT) are complete problems for the complexity classes NP and QMA which are believed to be intractable for classical and quantum computers, respectively. Statistical ensembles of instances of these problems have been studied previously in an attempt to elucidate their typical, as opposed to worst case, behavior. In this paper we introduce a new statistical ensemble that interpolates between classical and quantum. For the simplest 2-SAT/2-QSAT ensemble we find the exact boundary that separates SAT and UNSAT instances. We do so by establishing coincident lower and upper bounds, in the limit of large instances, on the extent of the UNSAT and SAT regions, respectively.
The concept of correlation is central to all approaches that attempt the description of many-body effects in electronic systems. Multipartite correlation is a quantum information theoretical property that is attributed to quantum states independent of the underlying physics. In quantum chemistry, however, the correlation energy (the energy not seized by the Hartree-Fock ansatz) plays a more prominent role. We show that these two different viewpoints on electron correlation are closely related. The key ingredient turns out to be the energy gap within the symmetry-adapted subspace. We then use a few-site Hubbard model and the stretched H$_2$ to illustrate this connection and to show how the corresponding measures of correlation compare.