Do you want to publish a course? Click here

Hawking-Moss transition with a black hole seed

177   0   0.0 ( 0 )
 Added by Ruth Gregory
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We extend the the concept of Hawking-Moss, or up-tunnelling, transitions in the early universe to include black hole seeds. The black hole greatly enhances the decay amplitude, however, order to have physically consistent results, we need to impose a new condition (automatically satisfied for the original Hawking-Moss instanton) that the cosmological horizon area should not increase during tunnelling. We motivate this conjecture physically in two ways. First, we look at the energetics of the process, using the formalism of extended black hole thermodynamics; secondly, we extend the stochastic inflationary formalism to include primordial black holes. Both of these methods give a physical substantiation of our conjecture.



rate research

Read More

Static oscillating bounces in Schwarzschild de Sitter spacetime are investigated. The oscillating bounce with many oscillations gives a super-thick bubble wall, for which the total vacuum energy increases while the mass of the black hole decreases due to the conservation of Arnowitt-Deser-Misner (ADM) mass. We show that the transition rate of such an up-tunneling consuming the seed black hole is higher than that of the Hawking-Moss transition. The correspondence of analyses in the static and global coordinates in the Euclidean de Sitter space is also investigated.
We study the Hawking flux from a black hole with soft hair by the anomaly cancellation method proposed by Robinson and Wilczek. Unlike the earlier studies considering the black hole with linear supertranslation hair, our study takes into account the supertranslation hair to the quadratic order, which then yields the angular dependent horizon. As a result, highly nontrivial kinetic-mixings appear among the spherical Kaluza-Klein modes of the (1+1)d near-horizon reduced theory, which obscures the traditional derivation of the Hawking flux. However, after a series of field re-definitions, we can disentangle the mode-mixings into canonical normal modes, but the reduced metrics for these normal modes are mode-dependent. Despite of this, the resultant Hawking flux turns out to be mode-independent and remains the same as the Schwarzschilds one. Thus, one cannot tell the black holes with nonlinear supertranslation hairs from the Schwarzschilds one by examining the Hawking flux, so that the nonlinear soft hairs can be thought as the microstates.
88 - H. Nikolic 2018
By entangling soft massless particles one can create an arbitrarily large amount of entanglement entropy that carries an arbitrarily small amount of energy. Dropping this entropy into the black hole (b.h.) one can increase the b.h. entropy by an amount that violates Bekenstein bound or any other reasonable bound, leading to a version of b.h. information paradox that does not involve Hawking radiation. Among many proposed solutions of the standard b.h. information paradox with Hawking radiation, only a few can also resolve this version without the Hawking radiation. The assumption that bo
Hawking flux from the Schwarzschild black hole with a global monopole is obtained by using Robinson and Wilczeks method. Adopting a dimension reduction technique, the effective quantum field in the (3+1)--dimensional global monopole background can be described by an infinite collection of the (1+1)--dimensional massless fields if neglecting the ingoing modes near the horizon, where the gravitational anomaly can be cancelled by the (1+1)--dimensional black body radiation at the Hawking temperature.
We extend the work by S. Iso, H. Umetsu and F. Wilczek [Phys. Rev. Lett. 96 (2006) 151302] to derive the Hawking flux via gauge and gravitational anomalies of a most general two-dimensional non-extremal black hole space-time with the determinant of its diagonal metric differing from the unity ($sqrt{-g} eq 1$) and use it to investigate Hawking radiation from the Reissner-Nordstrom black hole with a global monopole by requiring the cancellation of anomalies at the horizon. It is shown that the compensating energy momentum and gauge fluxes required to cancel gravitational and gauge anomalies at the horizon are precisely equivalent to the $(1+1)$-dimensional thermal fluxes associated with Hawking radiation emanating from the horizon at the Hawking temperature. These fluxes are universally determined by the value of anomalies at the horizon.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا