Do you want to publish a course? Click here

The PAU Survey: An improved photo-$z$ sample in the COSMOS field

376   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present -- and make publicly available -- accurate and precise photometric redshifts in the ACS footprint from the COSMOS field for objects with $i_{mathrm{AB}}leq 23$. The redshifts are computed using a combination of narrow band photometry from PAUS, a survey with 40 narrow bands spaced at $100r{A}$ intervals covering the range from $4500r{A}$ to $8500r{A}$, and 26 broad, intermediate, and narrow bands covering the UV, visible and near infrared spectrum from the COSMOS2015 catalogue. We introduce a new method that models the spectral energy distributions (SEDs) as a linear combination of continuum and emission line templates and computes its Bayes evidence, integrating over the linear combinations. The correlation between the UV luminosity and the OII line is measured using the 66 available bands with the zCOSMOS spectroscopic sample, and used as a prior which constrains the relative flux between continuum and emission line templates. The flux ratios between the OII line and $mathrm{H}_{alpha}$, $mathrm{H}_{beta}$ and $mathrm{OIII}$ are similarly measured and used to generate the emission line templates. Comparing to public spectroscopic surveys via the quantity $Delta_zequiv(z_{mathrm{photo}}-z_{mathrm{spec}})/(1+z_{mathrm{spec}})$, we find the photometric redshifts to be more precise than previous estimates, with $sigma_{68}(Delta_z) approx (0.003, 0.009)$ for galaxies at magnitude $i_{mathrm{AB}}sim18$ and $i_{mathrm{AB}}sim23$, respectively, which is $3times$ and $1.66times$ tighter than COSMOS2015. Additionally, we find the redshifts to be very accurate on average, yielding a median of the $Delta_z$ distribution compatible with $|mathrm{median}(Delta_z)|leq0.001$ at all redshifts and magnitudes considered. Both the added PAUS data and new methodology contribute significantly to the improved results.



rate research

Read More

The PAU Survey (PAUS) is an innovative photometric survey with 40 narrow bands at the William Herschel Telescope (WHT). The narrow bands are spaced at 100AA intervals covering the range 4500AA to 8500AA and, in combination with standard broad bands, enable excellent redshift precision. This paper describes the technique, galaxy templates and additional photometric calibration used to determine early photometric redshifts from PAUS. Using BCNz2, a new photometric redshift code developed for this purpose, we characterise the photometric redshift performance using PAUS data on the COSMOS field. Comparison to secure spectra from zCOSMOS DR3 shows that PAUS achieves $sigma_{68} /(1+z) = 0.0037$ to $i_{mathrm{AB}} < 22.5$ when selecting the best 50% of the sources based on a photometric redshift quality cut. Furthermore, a higher photo-z precision ($sigma_{68}/(1+z) sim 0.001$) is obtained for a bright and high quality selection, which is driven by the identification of emission lines. We conclude that PAUS meets its design goals, opening up a hitherto uncharted regime of deep, wide, and dense galaxy survey with precise redshifts that will provide unique insights into the formation, evolution and clustering of galaxies, as well as their intrinsic alignments.
We present the largest high-redshift (3<z<6.85) sample of X-ray-selected active galactic nuclei (AGN) on a contiguous field, using sources detected in the Chandra COSMOS Legacy survey. The sample contains 174 sources, 87 with spectroscopic redshift, the other 87 with photometric redshift (z_phot). In this work we treat z_phot as a probability weighted sum of contributions, adding to our sample the contribution of sources with z_phot<3 but z_phot probability distribution >0 at z>3. We compute the number counts in the observed 0.5-2 keV band, finding a decline in the number of sources at z>3 and constraining phenomenological models of X-ray background. We compute the AGN space density at z>3 in two different luminosity bins. At higher luminosities (logL(2-10 keV) > 44.1 erg/s) the space density declines exponentially, dropping by a factor ~20 from z~3 to z~6. The observed decline is ~80% steeper at lower luminosities (43.55 erg/s < logL(2-10 keV) < 44.1 erg/s), from z~3 to z~4.5. We study the space density evolution dividing our sample in optically classified Type 1 and Type 2 AGN. At logL(2-10 keV) > 44.1 erg/s, unobscured and obscured objects may have different evolution with redshift, the obscured component being three times higher at z~5. Finally, we compare our space density with predictions of quasar activation merger models, whose calibration is based on optically luminous AGN. These models significantly overpredict the number of expected AGN at logL(2-10 keV) > 44.1 erg/s with respect to our data.
In Sedgwick et al. (2019) we introduced and utilised a method to combat surface brightness and mass biases in galaxy sample selection, using core-collapse supernovae (CCSNe) as pointers towards their host galaxies, in order to: (i) search for low-surface brightness galaxies (LSBGs); (ii) assess the contributions of galaxies at a given mass to the star-formation-rate density (SFRD); and (iii) infer from this, using estimates of specific star-formation (SF) rate, the form of the SF-galaxy stellar mass function (GSMF). A CCSN-selection of SF-galaxies allows a probe of the form of the SFRD and GSMF deep into the dwarf galaxy mass regime. In the present work, we give improved constraints on our estimates of the SFRD and star-forming GSMF, in light of improved photometric redshift estimates required for estimates of galaxy stellar mass. The results are consistent with a power-law increase to SF-galaxy number density down to our low stellar mass limit of $sim 10^{6.2}$ M$_{odot}$. No deviation from the high-mass version of the surface brightness - mass relation is found in the dwarf mass regime. These findings imply no truncation to galaxy formation processes at least down to $sim 10^{6.2}$ M$_{odot}$.
We present a catalog of 10718 objects in the COSMOS field observed through multi-slit spectroscopy with the Deep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II telescope in the wavelength range ~5500-9800A. The catalog contains 6617 objects with high-quality spectra (two or more spectral features), and 1798 objects with a single spectroscopic feature confirmed by the photometric redshift. For 2024 typically faint objects we could not obtain reliable redshifts. The objects have been selected from a variety of input catalogs based on multi-wavelength observations in the field, and thus have a diverse selection function, which enables the study of the diversity in the galaxy population. The magnitude distribution of our objects is peaked at I_AB~23 and K_AB~21, with a secondary peak at K_AB~24. We sample a broad redshift distribution in the range 0<z<6, with one peak at z~1, and another one around z~4. We have identified 13 redshift spikes at z>0.65 with chance probabilities <4xE-4$, some of which are clearly related to protocluster structures of sizes >10 Mpc. An object-to-object comparison with a multitude of other spectroscopic samples in the same field shows that our DEIMOS sample is among the best in terms of fraction of spectroscopic failures and relative redshift accuracy. We have determined the fraction of spectroscopic blends to about 0.8% in our sample. This is likely a lower limit and at any rate well below the most pessimistic expectations. Interestingly, we find evidence for strong lensing of Ly-alpha background emitters within the slits of 12 of our target galaxies, increasing their apparent density by about a factor of 4.
Using the Hubble Space Telescope/Advanced Camera for Surveys data in the COSMOS field, we systematically searched clumpy galaxies at 0.2<z<1.0 and investigated the fraction of clumpy galaxies and its evolution as a function of stellar mass, star formation rate (SFR), and specific SFR (SSFR). The fraction of clumpy galaxies in star-forming galaxies with Mstar > 10^9.5 Msun decreases with time from ~0.35 at 0.8<z<1.0 to ~0.05 at 0.2<z<0.4 irrespective of the stellar mass, although the fraction tends to be slightly lower for massive galaxies with Mstar > 10^10.5 Msun at each redshift. On the other hand, the fraction of clumpy galaxies increases with increasing both SFR and SSFR in all the redshift ranges we investigated. In particular, we found that the SSFR dependences of the fractions are similar among galaxies with different stellar masses, and the fraction at a given SSFR does not depend on the stellar mass in each redshift bin. The evolution of the fraction of clumpy galaxies from z~0.9 to z~0.3 seems to be explained by such SSFR dependence of the fraction and the evolution of SSFRs of star-forming galaxies. The fraction at a given SSFR also appears to decrease with time, but this can be due to the effect of the morphological K-correction. We suggest that these results are understood by the gravitational fragmentation model for the formation of giant clumps in disk galaxies, where the gas mass fraction is a crucial parameter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا