Localization of light in a three-dimensional disordered crystal of atoms


Abstract in English

We demonstrate that a weak disorder in atomic positions introduces spatially localized optical modes in a dense three-dimensional ensemble of immobile two-level atoms arranged in a diamond lattice and coupled by the electromagnetic field. The frequencies of the localized modes concentrate near band edges of the unperturbed lattice. Finite-size scaling analysis of the percentiles of Thouless conductance reveals two mobility edges and yields an estimation $ u = 0.8$--1.1 for the critical exponent of the localization length. The localized modes disappear when the disorder becomes too strong and the system starts to resemble a fully disordered one where all modes are extended.

Download