Do you want to publish a course? Click here

Non-equilibrium magnetic response of canonical spin glass and magnetic glass

96   0   0.0 ( 0 )
 Added by Sindhunil B. Roy
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Time and history dependent magnetization has been observed in a wide variety of materials, which are collectively termed as the glassy magnetic systems. However, such systems showing similar non-equilibrium magnetic response can be microscopically very different and they can be distinguished by carefully looking into the details of the observed metastable magnetic behavior. Canonical spin glass is the most well studied member of this class and has been extensively investigated both experimentally and theoretically over the last five decades. In canonical spin glasses, the low temperature magnetic state obtained by cooling across the spin glass transition temperature in presence of an applied magnetic field is known as the field cooled (FC) state. This FC state in canonical spin glass is widely believed as an equilibrium state arising out of a thermodynamic second order phase transition. Here, we show that the FC state in canonical spin glass is not really an equilibrium state of the system. We report careful dc magnetization and ac susceptibility measurements on two canonical spin glass systems, AuMn (1.8%) and AgMn (1.1%). The dc magnetization in the FC state shows clear temperature dependence. In addition, the magnetization shows a distinct thermal hysteresis in the temperature regime below the spin glass transition temperature. On the other hand, the temperature dependence of ac susceptibility has clear frequency dispersion below spin glass transition in the FC state prepared by cooling the sample in the presence of a dc-bias field. We further distinguish the metastable response of the FC state of canonical spin glass from the metastable response the FC state in an entirely different class of glassy magnetic system namely magnetic glass, where the non-equilibrium behavior is associated with the kinetic-arrest of a first order magnetic phase transition.



rate research

Read More

Canonical spin-glass (SG) is an enigmatic system in condensed matter physics. In spite of the intense activities of last five decades several questions regarding the nature of the SG phase transition and the SG ground state are yet to be resolved completely. In this backdrop we have revisited the field cooled state of canonical spin-glass. We have experimentally studied magnetic response in two canonical spin-glass systems AuMn(1.8%) and AgMn(1.1%), both in the field cooled (FC) as well as zero field cooled (ZFC) state. We show that the well known magnetic memory effect, which clearly established earlier the metastable nature of the ZFC state in SG, is also present in the FC state. The results of our experimental study indicate that the FC state also is a non-equilibrium state, and hence the energy landscape involved is a non-trivial one. This in turn seriously questions the picture of spin-glass transformation as a second order thermodynamic phase transition.
We report inelastic neutron scattering results that reveal an hour-glass magnetic excitation spectrum in La1.75Sr0.25CoO4. The magnetic spectrum is similar to that observed previously in La1.67Sr0.33CoO4, but the spectral features are broader. We show that the spectrum of La1.75Sr0.25CoO4 can be modeled by the spin dynamics of a system with a disordered cluster spin glass ground state. Bulk magnetization measurements are presented which support the proposed glassy ground state. The observations reiterate the importance of quasi-one-dimensional magnetic correlations and disorder for the hour-glass spectrum, and suggest that disordered spin and charge stripes exist at lower doping in La2-xSrxCoO4 than previously thought.
The quantum critical behavior of the Ising glass in a magnetic field is investigated. We focus on the spin glass to paramagnet transition of the transverse degrees of freedom in the presence of finite longitudinal field. We use two complementary techniques, the Landau theory close to the T=0 transition and the exact diagonalization method for finite systems. This allows us to estimate the size of the critical region and characterize various crossover regimes. An unexpectedly small energy scale on the disordered side of the critical line is found, and its possible relevance to experiments on metallic glasses is briefly discussed.
The physics of disordered alloys, such as typically the well known case of CeNi1-xCux alloys, showing an interplay among the Kondo effect, the spin glass state and a magnetic order, has been studied firstly within an average description like in the Sherrington-Kirkpatrick model. Recently, a theoretical model (PRB 74, 014427 (2006)) involving a more local description of the intersite interaction has been proposed to describe the phase diagram of CeNi1-xCux. This alloy is an example of the complex interplay between Kondo effect and frustration in which there is in particular the onset of a cluster-glass state. Although the model given in Ref. PRB 74, 014427 (2006) has reproduced the different phases relatively well, it is not able to describe the cluster-glass state. We study here the competition between the Kondo effect and a cluster glass phase within a Kondo Lattice model with an inter-cluster random Gaussian interaction. The inter-cluster term is treated within the cluster mean-field theory for spin glasses, while, inside the cluster, an exact diagonalisation is performed including inter-site ferromagnetic and intra-site Kondo interactions. The cluster glass order parameters and the Kondo correlation function are obtained for different values of the cluster size, the intra-cluster ferromagnetic coupling and the Kondo intra-site coupling. We obtain, for instance, that the increase of the Kondo coupling tends to destroy the cluster glass phase.
Superconductivity in layered copper-oxide compounds emerges when charge carriers are added to antiferromagnetically-ordered CuO2 layers. The carriers destroy the antiferromagnetic order, but strong spin fluctuations persist throughout the superconducting phase and are intimately linked to super-conductivity. Neutron scattering measurements of spin fluctuations in hole-doped copper oxides have revealed an unusual `hour-glass feature in the momentum-resolved magnetic spectrum, present in a wide range of superconducting and non-superconducting materials. There is no widely-accepted explanation for this feature. One possibility is that it derives from a pattern of alternating spin and charge stripes, an idea supported by measurements on stripe-ordered La1.875Ba0.125CuO4. However, many copper oxides without stripe order also exhibit an hour-glass spectrum$. Here we report the observation of an hour-glass magnetic spectrum in a hole-doped antiferromagnet from outside the family of superconducting copper oxides. Our system has stripe correlations and is an insulator, which means its magnetic dynamics can conclusively be ascribed to stripes. The results provide compelling evidence that the hour-glass spectrum in the copper-oxide superconductors arises from fluctuating stripes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا