No Arabic abstract
The quantum channels with memory, known as non-Markovian channels, are of crucial importance for a realistic description of a variety of physical systems, and pave ways for new methods of decoherence control by manipulating the properties of environment such as its frequency spectrum. In this work, the reduced dynamics of coin in a discrete-time quantum walk is characterized as a non-Markovian quantum channel. A general formalism is sketched to extract the Kraus operators for a $t$-step quantum walk. Non-Markovianity, in the sense of P-indivisibility of the reduced coin dynamics, is inferred from the non-monotonous behavior of distinguishably of two orthogonal states subjected to it. Further, we study various quantum information theoretic quantities of a qubit under the action of this channel, putting in perspective, the role such channels can play in various quantum information processing tasks.
We extend non-Hermitian topological quantum walks on a Su-Schrieffer-Heeger (SSH) lattice [M. S. Rudner and L. Levitov, Phys. Rev. Lett. 102, 065703 (2009)] to the case of non-Markovian evolution. This non-Markovian model is established by coupling each unit cell in the SSH lattice to a reservoir formed by a quasi-continuum of levels. We find a topological transition in this model even in the case of non-Markovian evolution, where the walker may visit the reservoir and return to the SSH lattice at a later time. The existence of a topological transition does, however, depend on the low-frequency properties of the reservoir, characterized by a spectral density $J(epsilon)propto |epsilon|^alpha$. In particular, we find a robust topological transition for a sub-Ohmic ($alpha<1$) and Ohmic ($alpha=1$) reservoir, but no topological transition for a super-Ohmic ($alpha>1$) reservoir. This behavior is directly related to the well-known localization transition for the spin-boson model. We confirm the presence of non-Markovian dynamics by explicitly evaluating a measure of Markovianity for this model.
We introduce quantum walks with a time-dependent coin, and show how they include, as a particular case, the generalized quantum walk recently studied by Wojcik et al. {[}Phys. Rev. Lett. textbf{93}, 180601(2004){]} which exhibits interesting dynamical localization and quasiperiodic dynamics. Our proposal allows for a much easier implementation of this particular rich dynamics than the original one. Moreover, it allows for an additional control on the walk, which can be used to compensate for phases appearing due to external interactions. To illustrate its feasibility, we discuss an example using an optical cavity. We also derive an approximated solution in the continuous limit (long--wavelength approximation) which provides physical insight about the process.
Machine learning methods have proved to be useful for the recognition of patterns in statistical data. The measurement outcomes are intrinsically random in quantum physics, however, they do have a pattern when the measurements are performed successively on an open quantum system. This pattern is due to the system-environment interaction and contains information about the relaxation rates as well as non-Markovian memory effects. Here we develop a method to extract the information about the unknown environment from a series of projective single-shot measurements on the system (without resorting to the process tomography). The method is based on embedding the non-Markovian system dynamics into a Markovian dynamics of the system and the effective reservoir of finite dimension. The generator of Markovian embedding is learned by the maximum likelihood estimation. We verify the method by comparing its prediction with an exactly solvable non-Markovian dynamics. The developed algorithm to learn unknown quantum environments enables one to efficiently control and manipulate quantum systems.
We study the dynamics of a quantum system whose interaction with an environment is described by a collision model, i.e. the open dynamics is modelled through sequences of unitary interactions between the system and the individual constituents of the environment, termed ancillas, which are subsequently traced out. In this setting non-Markovianity is introduced by allowing for additional unitary interactions between the ancillas. For this model, we identify the relevant system-environment correlations that lead to a non-Markovian evolution. Through an equivalent picture of the open dynamics, we introduce the notion of memory depth where these correlations are established between the system and a suitably sized memory rendering the overall system+memory evolution Markovian. We extend our analysis to show that while most system-environment correlations are irrelevant for the dynamical characterization of the process, they generally play an important role in the thermodynamic description. Finally, we show that under an energy-preserving system-environment interaction, a non-monotonic time behaviour of the heat flux serves as an indicator of non-Markovian behaviour.
The study of memory effects in quantum channels helps in developing characterization methods for open quantum systems and strategies for quantum error correction. Two main sets of channels exist, corresponding to system dynamics with no memory (Markovian) and with memory (non-Markovian). Interestingly, these sets have a non-convex geometry, allowing one to form a channel with memory from the addition of memoryless channels and vice-versa. Here, we experimentally investigate this non-convexity in a photonic setup by subjecting a single qubit to a convex combination of Markovian and non-Markovian channels. We use both divisibility and distinguishability as criteria for the classification of memory effects, with associated measures. Our results highlight some practical considerations that may need to be taken into account when using memory criteria to study system dynamics given by the addition of Markovian and non-Markovian channels in experiments.