Interfacial Dzyaloshinskii-Moriya interaction and spin-orbit torque in Au1-xPtx/Co bilayers with varying interfacial spin-orbit coupling


Abstract in English

The quantitative roles of the interfacial spin-orbit coupling (SOC) in Dzyaloshinskii-Moriya interaction (DMI) and dampinglike spin-orbit torque ({tau}DL) have remained unsettled after a decade of intensive study. Here, we report a conclusive experiment evidence that, because of the critical role of the interfacial orbital hybridization, the interfacial DMI is not necessarily a linear function of the interfacial SOC, e.g. at Au1-xPtx/Co interfaces where the interfacial SOC can be tuned significantly via strongly composition (x)-dependent spin-orbit proximity effect without varying the bulk SOC and the electronegativity of the Au1-xPtx layer. We also find that {tau}DL in the Au1-xPtx/Co bilayers varies distinctly from the interfacial SOC as a function of x, indicating no important {tau}DL contribution from the interfacial Rashba-Edelstein effect.

Download