Do you want to publish a course? Click here

Results from the Alfv{e}n Eigenmode Active Diagnostic during the 2019-2020 JET deuterium campaign

54   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper presents results of extensive analysis of mode excitation observed during the operation of the Alfv{e}n Eigenmode Active Diagnostic (AEAD) in the JET tokamak during the 2019-2020 deuterium campaign. Six of eight toroidally spaced antennas, each with independent power and phasing, were successful in actively exciting stable MHD modes in 479 plasmas. In total, 4768 magnetic resonances were detected with up to fourteen fast magnetic probes. In this work, we present the calculations of resonant frequencies $f_0$, damping rates $gamma < 0$, and toroidal mode numbers $n$, spanning the parameter range $f_0 approx$ 30 - 250 kHz, $-gamma approx$ 0 - 13 kHz, and $vert n vert leq 30$. In general, good agreement is seen between the resonant and the calculated toroidal Alfv{e}n Eigenmode frequencies, and between the toroidal mode numbers applied by the AEAD and estimated of the excited resonances. We note several trends in the database: the probability of resonance detection decreases with plasma current and external heating power; the normalized damping rate increases with edge safety factor but decreases with external heating. These results provide key information to prepare future experimental campaigns and to better understand the physics of excitation and damping of Alfv{e}n Eigenmodes in the presence of alpha particles during the upcoming DT campaign, thereby extrapolating with confidence to future tokamaks.



rate research

Read More

This paper presents a dedicated study of plasma-antenna (PA) coupling with the Alfven Eigenmode Active Diagnostic (AEAD) in JET. Stable AEs and their resonant frequencies f, damping rates $gamma$ < 0, and toroidal mode numbers n are measured for various PA separations and limiter versus X-point magnetic configurations. Two stable AEs are observed to be resonantly excited at distinct low and high frequencies in limiter plasmas. The values of f and n do not vary with PA separation. However, $vertgammavert$ increases with PA separation for the low-f, but not high-f, mode, yet this may be due to slightly different edge conditions. The high-f AE is detected throughout the transition from limiter to X-point configuration, though its damping rate increases; the low-f mode, on the other hand, becomes unidentifiable. The linear resistive MHD code CASTOR is used to simulate the frequency scan of an AEAD-like external antenna. For the limiter pulses, the high-f mode is determined to be an n = 0 GAE, while the low-f mode is likely an n = 2 TAE. During the transition from limiter to X-point configuration, CASTOR indicates that n = 1 and 2 EAEs are excited in the edge gap. These results extend previous experimental studies in JET and Alcator C-Mod; validate the computational work performed by Dvornova et al 2020 Phys. Plasmas 27 012507; and provide guidance for the optimization of PA coupling in upcoming JET energetic particle experiments, for which the AEAD will aim to identify the contribution of alpha particles to AE drive during the DT campaign.
This competition concerns educational diagnostic questions, which are pedagogically effective, multiple-choice questions (MCQs) whose distractors embody misconceptions. With a large and ever-increasing number of such questions, it becomes overwhelming for teachers to know which questions are the best ones to use for their students. We thus seek to answer the following question: how can we use data on hundreds of millions of answers to MCQs to drive automatic personalized learning in large-scale learning scenarios where manual personalization is infeasible? Success in using MCQ data at scale helps build more intelligent, personalized learning platforms that ultimately improve the quality of education en masse. To this end, we introduce a new, large-scale, real-world dataset and formulate 4 data mining tasks on MCQs that mimic real learning scenarios and target various aspects of the above question in a competition setting at NeurIPS 2020. We report on our NeurIPS competition in which nearly 400 teams submitted approximately 4000 submissions, with encouragingly diverse and effective approaches to each of our tasks.
Two novel nonlinear mode coupling processes for reversed shear Alfven eigenmode (RSAE) nonlinear saturation are proposed and investigated. In the first process, RSAE nonlinearly couples to a co-propagating toroidal Alfven eigenmode (TAE) with the same toroidal and poloidal mode numbers, and generates a geodesic acoustic mode (GAM). In the second process, RSAE couples to a counter-propagating TAE and generates an ion acoustic wave quasi-mode (IAW). The condition for the two processes to occur is favored during current ramp. Both processes contribute to effectively saturate the Alfvenic instabilities, as well as nonlinearly transfer of energy from energetic fusion alpha particles to fuel ions in burning plasmas.
The Argentine Institute of Radio astronomy (IAR) is equipped with two single-dish 30-m radio antennas capable of performing daily observations of pulsars and radio transients in the southern hemisphere at 1.4 GHz. We aim to contribute to pulsar timing studies related to short time-scale interstellar scintillation and searches for sources of continuous gravitational waves. We performed high-cadence (almost daily) and long-duration observations of the bright millisecond pulsar J0437$-$4715 for over a year, gathering more than 700 hours of good-quality data with timing precision better than 1~$mu$s. We characterize the white and red timing noise in IARs observations of J0437$-$4715. We quantify the effects of scintillation in this data set and perform single pulsar searches of continuous gravitational waves, setting constraints in the nHz--$mu$Hz frequency range. We demonstrate IARs potential for performing pulsar monitoring in the 1.4 GHz radio band for long periods of time with a daily cadence. In particular, we conclude that the ongoing observational campaign of the millisecond pulsar J0437$-$4715 can contribute to increase the sensitivity of the existing pulsar timing arrays.
303 - Honghong Wu 2018
Kinetic Alfv{e}n waves (KAWs) are the short-wavelength extension of the MHD Alfv{e}n-wave branch in the case of highly-oblique propagation with respect to the background magnetic field. Observations of space plasma show that small-scale turbulence is mainly KAW-like. We apply two theoretical approaches, collisional two-fluid theory and collisionless kinetic theory, to obtain predictions for the KAW polarizations depending on $beta_mathrm{p}$ (the ratio of the proton thermal pressure to the magnetic pressure) at the ion gyroscale in terms of fluctuations in density, bulk velocity, and pressure. We perform a wavelet analysis of MMS magnetosheath measurements and compare the observations with both theories. We find that the two-fluid theory predicts the observations better than kinetic theory, suggesting that the small-scale KAW-like fluctuations exhibit a fluid-like behavior in the magnetosheath although the plasma is weakly collisional. We also present predictions for the KAW polarizations in the inner heliosphere that are testable with Parker Solar Probe and Solar Orbiter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا