The Gaia-ESO survey: 3D NLTE abundances in the open cluster NGC 2420 suggest atomic diffusion and turbulent mixing at the origin of chemical abundance variations


Abstract in English

Atomic diffusion and mixing processes in stellar interiors influence the structure and the surface composition of stars. Some of these processes cannot yet be modelled from the first principles. This limits their applicability in stellar models used for studies of stellar populations and Galactic evolution. Our main goal is to put constrains on the stellar structure and evolution models using new refined measurements of chemical composition in stars of Galactic open cluster. We use medium-resolution, 19 200 <= R <= 21 500, optical spectra of the stars in the open cluster NGC 2420 obtained within the Gaia-ESO survey. The sample covers all evolutionary stages from the main-sequence to red giant branch. Stellar parameters are derived using a combined Bayesian analysis of spectra, 2MASS photometry, and astrometric data from Gaia DR2. The abundances of Mg, Ca, Fe, and Li are determined from non-local thermodynamic equilibrium (NLTE) synthetic spectra, computed using one-dimensional (1D) and averaged three-dimensional (3D) model atmospheres. We compare our results with a grid of Code dEvolution Stellaire Adaptatif et Modulaire (CESTAM) stellar evolution models, which include atomic diffusion, turbulent and rotational mixing. We find prominent evolutionary trends in the abundances of Fe, Ca, Mg, and Li with the mass of the stars in the cluster. Fe, Mg, and Ca show a depletion at the cluster turn-off, but the abundances gradually increase and flatten near the base of the RGB. The abundance trend for Li displays a signature of rotational mixing on the main-sequence and abrupt depletion on the subgiant branch, which is caused by advection of Li-poor material to the surface. The analysis of abundances combined with the CESTAM model predictions allows us to place limits on the parameter space of the models and to constrain the zone in the stellar interior where turbulent mixing takes place.

Download