Do you want to publish a course? Click here

The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological Implications from two Decades of Spectroscopic Surveys at the Apache Point observatory

124   0   0.0 ( 0 )
 Added by Eva-Maria Mueller
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the cosmological implications from final measurements of clustering using galaxies, quasars, and Ly$alpha$ forests from the completed Sloan Digital Sky Survey (SDSS) lineage of experiments in large-scale structure. These experiments, composed of data from SDSS, SDSS-II, BOSS, and eBOSS, offer independent measurements of baryon acoustic oscillation (BAO) measurements of angular-diameter distances and Hubble distances relative to the sound horizon, $r_d$, from eight different samples and six measurements of the growth rate parameter, $fsigma_8$, from redshift-space distortions (RSD). This composite sample is the most constraining of its kind and allows us to perform a comprehensive assessment of the cosmological model after two decades of dedicated spectroscopic observation. We show that the BAO data alone are able to rule out dark-energy-free models at more than eight standard deviations in an extension to the flat, $Lambda$CDM model that allows for curvature. When combined with Planck Cosmic Microwave Background (CMB) measurements of temperature and polarization the BAO data provide nearly an order of magnitude improvement on curvature constraints. The RSD measurements indicate a growth rate that is consistent with predictions from Planck primary data and with General Relativity. When combining the results of SDSS BAO and RSD with external data, all multiple-parameter extensions remain consistent with a $Lambda$CDM model. Regardless of cosmological model, the precision on $Omega_Lambda$, $H_0$, and $sigma_8$, remains at roughly 1%, showing changes of less than 0.6% in the central values between models. The inverse distance ladder measurement under a o$w_0w_a$CDM yields $H_0= 68.20 pm 0.81 , rm km, s^{-1} Mpc^{-1}$, remaining in tension with several direct determination methods. (abridged)



rate research

Read More

We present large-scale structure catalogs from the completed extended Baryon Oscillation Spectroscopic Survey (eBOSS). Derived from Sloan Digital Sky Survey (SDSS) -IV Data Release 16 (DR16), these catalogs provide the data samples, corrected for observational systematics, and random positions sampling the survey selection function. Combined, they allow large-scale clustering measurements suitable for testing cosmological models. We describe the methods used to create these catalogs for the eBOSS DR16 Luminous Red Galaxy (LRG) and Quasar samples. The quasar catalog contains 343,708 redshifts with $0.8 < z < 2.2$ over 4,808,deg$^2$. We combine 174,816 eBOSS LRG redshifts over 4,242,deg$^2$ in the redshift interval $0.6 < z < 1.0$ with SDSS-III BOSS LRGs in the same redshift range to produce a combined sample of 377,458 galaxy redshifts distributed over 9,493,deg$^2$. Improved algorithms for estimating redshifts allow that 98 per cent of LRG observations result in a successful redshift, with less than one per cent catastrophic failures ($Delta z > 1000$ ${rm km~s}^{-1}$). For quasars, these rates are 95 and 2 per cent (with $Delta z > 3000$ ${rm km~s}^{-1}$). We apply corrections for trends between the number densities of our samples and the properties of the imaging and spectroscopic data. For example, the quasar catalog obtains a $chi^2$/DoF$= 776/10$ for a null test against imaging depth before corrections and a $chi^2$/DoF$=6/8$ after. The catalogs, combined with careful consideration of the details of their construction found here-in, allow companion papers to present cosmological results with negligible impact from observational systematic uncertainties.
We present the characteristics of the Damped Lyman-$alpha$ (DLA) systems found in the data release DR16 of the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey (SDSS). DLAs were identified using the convolutional neural network (CNN) of~cite{Parks2018}. A total of 117,458 absorber candidates were found with $2 leq zdla leq 5.5$ and $19.7 leq lognhi leq 22$, including 57,136 DLA candidates with $lognhi geq 20.3$. Mock quasar spectra were used to estimate DLA detection efficiency and the purity of the resulting catalog. Restricting the quasar sample to bright forests, i.e. those with mean forest fluxes $meanflux>2timesfluxunit$, the completeness and purity are greater than 90% for DLAs with column densities in the range $20.1leq lognhi leq 22$.
We present a measurement of baryonic acoustic oscillations (BAO) from Lyman-$alpha$ (Ly$alpha$) absorption and quasars at an effective redshift $z=2.33$ using the complete extended Baryonic Oscillation Spectroscopic Survey (eBOSS). The sixteenth and final eBOSS data release (SDSS DR16) contains all data from eBOSS and its predecessor, the Baryonic Oscillation Spectroscopic Survey (BOSS), providing $210,005$ quasars with $z_{q}>2.10$ that are used to measure Ly$alpha$ absorption. We measure the BAO scale both in the auto-correlation of Ly$alpha$ absorption and in its cross correlation with $341,468$ quasars with redshift $z_{q}>1.77$. Apart from the statistical gain from new quasars and deeper observations, the main improvements over previous work come from more accurate modeling of physical and instrumental correlations and the use of new sets of mock data. Combining the BAO measurement from the auto- and cross-correlation yields the constraints of the two ratios $D_{H}(z=2.33)/r_{d} = 8.99 pm 0.19$ and $D_{M}(z=2.33)/r_{d} = 37.5 pm 1.1$, where the error bars are statistical. These results are within $1.5sigma$ of the prediction of the flat-$Lambda$CDM cosmology of Planck~(2016). The analysis code, texttt{picca}, the catalog of the flux-transmission field measurements, and the $Delta chi^{2}$ surfaces are publicly available.
We present a void clustering analysis in configuration-space using the completed Sloan Digital Sky Survey IV (SDSS-IV) extended Baryon Oscillation Spectroscopic Survey (eBOSS) DR16 samples. These samples consist of Luminous Red Galaxies (LRG) combined with the high redshift tail of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) DR12 CMASS galaxies (called as LRG+CMASS sample), Emission Line Galaxies (ELG) and quasars (QSO). We build void catalogues from the three eBOSS DR16 samples using a ZOBOV-based algorithm, providing 2,814 voids, 1,801 voids and 4,347 voids in the LRG+CMASS, ELG and QSO samples, respectively, spanning the redshift range $0.6<z<2.2$. We measure the redshift space distortions (RSD) around voids using the anisotropic void-galaxy cross-correlation function and we extract the distortion parameter $beta$. We test the methodology on realistic simulations before applying it to the data, and we investigate all our systematic errors on these mocks. We find $beta^{rm LRG}(z=0.74)=0.415pm0.087$, $beta^{rm ELG}(z=0.85)=0.665pm0.125$ and $beta^{rm QSO}(z=1.48)=0.313pm0.134$, for the LRG+CMASS, ELG and QSO sample, respectively. The quoted errors include systematic and statistical contributions. In order to convert our measurements in terms of the growth rate $fsigma_8$, we use consensus values of linear bias from the eBOSS DR16 companion papers~citep{eBOSScosmo}, resulting in the following constraints: $fsigma_8(z=0.74)=0.50pm0.11$, $fsigma_8(z=0.85)=0.52pm0.10$ and $fsigma_8(z=1.48)=0.30pm0.13$. Our measurements are consistent with other measurements from eBOSS DR16 using conventional clustering techniques.
96 - Adam D. Myers 2015
As part of the Sloan Digital Sky Survey IV the extended Baryon Oscillation Spectroscopic Survey (eBOSS) will improve measurements of the cosmological distance scale by applying the Baryon Acoustic Oscillation (BAO) method to quasar samples. eBOSS will adopt two approaches to target quasars over 7500 sq. deg. First, a CORE quasar sample will combine optical selection in ugriz using a likelihood-based routine called XDQSOz, with a mid-IR-optical color-cut. eBOSS CORE selection (to g < 22 OR r < 22) should return ~ 70 quasars per sq. deg. at redshifts 0.9 < z < 2.2 and ~7 z > 2.1 quasars per sq. deg. Second, a selection based on variability in multi-epoch imaging from the Palomar Transient Factory should recover an additional ~3-4 z > 2.1 quasars per sq. deg. to g < 22.5. A linear model of how imaging systematics affect target density recovers the angular distribution of eBOSS CORE quasars over 96.7% (76.7%) of the SDSS North (South) Galactic Cap area. The eBOSS CORE quasar sample should thus be sufficiently dense and homogeneous over 0.9 < z < 2.2 to yield the first few-percent-level BAO constraint near z~1.5. eBOSS quasars at z > 2.1 will be used to improve BAO measurements in the Lyman-alpha Forest. Beyond its key cosmological goals, eBOSS should be the next-generation quasar survey, comprising > 500,000 new quasars and > 500,000 uniformly selected spectroscopically confirmed 0.9 < z < 2.2 quasars. At the conclusion of eBOSS, the SDSS will have provided unique spectra of over 800,000 quasars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا