No Arabic abstract
Since the discovery of the $Lambda(1405)$, it remains poorly described by conventional constituent quark models, and it is a candidate for having an exotic meson-baryon or penta-quark structure, similar to states recently reported in the hidden charm sector. The $Lambda(1405)$ can be produced in the reaction $gamma p rightarrow K^+Lambda(1405)$. The pure I=0 decay mode into $Sigma^0pi^0$ is prohibited for the mass-overlapping $Sigma(1385)$. Combining a large aperture forward magnetic spectrometer and a central BGO crystal calorimeter, the BGO-OD experiment is ideally suited to measure this decay with the $K^+$ in the forward direction. Preliminary results are presented. *Supported by DFG (PN 388979758, 405882627).
BGO-OD is a newly commissioned experiment to investigate the internal structure of the nucleon, using an energy tagged bremsstrahlung photon beam at the ELSA electron facility. The setup consists of a highly segmented BGO calorimeter surrounding the target, with a particle tracking magnetic spectrometer at forward angles. BGO-OD is ideal for investigating meson photoproduction. The extensive physics programme for open strangeness photoproduction is introduced, and preliminary analysis presented.
The BGO-OD experiment at the ELSA accelerator facility uses an energy tagged bremsstrahlung photon beam to investigate the excitation structure of the nucleon. The setup consists of a highly segmented BGO calorimeter surrounding the target, with a particle tracking magnetic spectrometer at forward angles. BGO-OD is ideal for investigating low momentum transfer processes due to the acceptance and high momentum resolution at forward angles. In particular, this enables the investigation of strangeness photoproduction where t-channel exchange mechanisms play an important role. This also allows access to low momentum exchange kinematics where extended, molecular structure may manifest in reaction mechanisms. First key results at low $t$ indicate a cusp-like structure in $K^+Sigma^0$ photoproduction at $W = 1900$,MeV, line shapes and differential cross sections for $K^+Lambda$(1405)$rightarrow K^+Sigma^0pi^0$, and a peak structure in $K^0_SSigma^0$ photoproduction. The peak in the $K^0_SSigma^0$ channel appears consistent with meson-baryon generated states, where equivalent models have been used to describe the $P_C$ pentaquark candidates in the heavy charmed quark sector.
The BGO-OD experiment at the University of Bonns ELSA accelerator facility in Germany is ideally suited to investigate photoproduction at extreme forward angles. It combines a highly segmented BGO electromagnetic calorimeter at central angles and an open dipole magnetic spectrometer in the forward direction. This allows the detection of forward going kaons, and complex final states of mixed charge from hyperon decays. Current projects at the BGO-OD experiment include strangeness production of $gamma p rightarrow K^+ Lambda/Sigma^0$ at forward angles, $K^0Sigma^0$ with a deuteron target and $K^+Lambda(1405)$ line shape and cross section measurements.
We investigate the photoproduction of $K^*$ vector meson for the study of the $Lambda(1405)$ resonance. The invariant mass distribution of $piSigma$ shows a different shape from the nominal one, peaking at 1420 MeV. This is considered as a consequence of the double pole structure of $Lambda(1405)$, predicted in the chiral unitary model. Combined with other reactions, such as $pi^- p to K^0 piSigma$, experimental confirmation of this fact will reveal a novel structure of the $Lambda(1405)$ state.
The photo-induced $K^*$ vector meson production is investigated for the study of the $Lambda(1405)$ resonance. This reaction is particularly suited to the isolation of the second pole in the $Lambda(1405)$ region which couples dominantly to the $bar K N$ channel. We obtain the mass distribution of the $Lambda(1405)$ which peaks at 1420 MeV, and differs from the nominal one. Combined with several other reactions, like the $pi^- p to K^0 pi Sigma$ which favours the first pole, this detailed study will reveal a novel structure of the $Lambda(1405)$ state.